This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplbas2.p | |- P = ( I mPoly R ) |
|
| mplbas2.s | |- S = ( I mPwSer R ) |
||
| mplbas2.v | |- V = ( I mVar R ) |
||
| mplbas2.a | |- A = ( AlgSpan ` S ) |
||
| mplbas2.i | |- ( ph -> I e. W ) |
||
| mplbas2.r | |- ( ph -> R e. CRing ) |
||
| Assertion | mplbas2 | |- ( ph -> ( A ` ran V ) = ( Base ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplbas2.p | |- P = ( I mPoly R ) |
|
| 2 | mplbas2.s | |- S = ( I mPwSer R ) |
|
| 3 | mplbas2.v | |- V = ( I mVar R ) |
|
| 4 | mplbas2.a | |- A = ( AlgSpan ` S ) |
|
| 5 | mplbas2.i | |- ( ph -> I e. W ) |
|
| 6 | mplbas2.r | |- ( ph -> R e. CRing ) |
|
| 7 | 2 5 6 | psrassa | |- ( ph -> S e. AssAlg ) |
| 8 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 9 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 10 | 1 2 8 9 | mplbasss | |- ( Base ` P ) C_ ( Base ` S ) |
| 11 | 10 | a1i | |- ( ph -> ( Base ` P ) C_ ( Base ` S ) ) |
| 12 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 13 | 6 12 | syl | |- ( ph -> R e. Ring ) |
| 14 | 2 3 9 5 13 | mvrf | |- ( ph -> V : I --> ( Base ` S ) ) |
| 15 | 14 | ffnd | |- ( ph -> V Fn I ) |
| 16 | 5 | adantr | |- ( ( ph /\ x e. I ) -> I e. W ) |
| 17 | 13 | adantr | |- ( ( ph /\ x e. I ) -> R e. Ring ) |
| 18 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 19 | 1 3 8 16 17 18 | mvrcl | |- ( ( ph /\ x e. I ) -> ( V ` x ) e. ( Base ` P ) ) |
| 20 | 19 | ralrimiva | |- ( ph -> A. x e. I ( V ` x ) e. ( Base ` P ) ) |
| 21 | ffnfv | |- ( V : I --> ( Base ` P ) <-> ( V Fn I /\ A. x e. I ( V ` x ) e. ( Base ` P ) ) ) |
|
| 22 | 15 20 21 | sylanbrc | |- ( ph -> V : I --> ( Base ` P ) ) |
| 23 | 22 | frnd | |- ( ph -> ran V C_ ( Base ` P ) ) |
| 24 | 4 9 | aspss | |- ( ( S e. AssAlg /\ ( Base ` P ) C_ ( Base ` S ) /\ ran V C_ ( Base ` P ) ) -> ( A ` ran V ) C_ ( A ` ( Base ` P ) ) ) |
| 25 | 7 11 23 24 | syl3anc | |- ( ph -> ( A ` ran V ) C_ ( A ` ( Base ` P ) ) ) |
| 26 | 2 1 8 5 13 | mplsubrg | |- ( ph -> ( Base ` P ) e. ( SubRing ` S ) ) |
| 27 | 2 1 8 5 13 | mpllss | |- ( ph -> ( Base ` P ) e. ( LSubSp ` S ) ) |
| 28 | eqid | |- ( LSubSp ` S ) = ( LSubSp ` S ) |
|
| 29 | 4 9 28 | aspid | |- ( ( S e. AssAlg /\ ( Base ` P ) e. ( SubRing ` S ) /\ ( Base ` P ) e. ( LSubSp ` S ) ) -> ( A ` ( Base ` P ) ) = ( Base ` P ) ) |
| 30 | 7 26 27 29 | syl3anc | |- ( ph -> ( A ` ( Base ` P ) ) = ( Base ` P ) ) |
| 31 | 25 30 | sseqtrd | |- ( ph -> ( A ` ran V ) C_ ( Base ` P ) ) |
| 32 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 33 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 34 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 35 | 5 | adantr | |- ( ( ph /\ x e. ( Base ` P ) ) -> I e. W ) |
| 36 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 37 | 13 | adantr | |- ( ( ph /\ x e. ( Base ` P ) ) -> R e. Ring ) |
| 38 | simpr | |- ( ( ph /\ x e. ( Base ` P ) ) -> x e. ( Base ` P ) ) |
|
| 39 | 1 32 33 34 35 8 36 37 38 | mplcoe1 | |- ( ( ph /\ x e. ( Base ` P ) ) -> x = ( P gsum ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) ) ) |
| 40 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
| 41 | 1 5 13 | mplringd | |- ( ph -> P e. Ring ) |
| 42 | ringabl | |- ( P e. Ring -> P e. Abel ) |
|
| 43 | 41 42 | syl | |- ( ph -> P e. Abel ) |
| 44 | 43 | adantr | |- ( ( ph /\ x e. ( Base ` P ) ) -> P e. Abel ) |
| 45 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 46 | 45 | rabex | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 47 | 46 | a1i | |- ( ( ph /\ x e. ( Base ` P ) ) -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 48 | 14 | frnd | |- ( ph -> ran V C_ ( Base ` S ) ) |
| 49 | 4 9 | aspsubrg | |- ( ( S e. AssAlg /\ ran V C_ ( Base ` S ) ) -> ( A ` ran V ) e. ( SubRing ` S ) ) |
| 50 | 7 48 49 | syl2anc | |- ( ph -> ( A ` ran V ) e. ( SubRing ` S ) ) |
| 51 | 1 2 8 | mplval2 | |- P = ( S |`s ( Base ` P ) ) |
| 52 | 51 | subsubrg | |- ( ( Base ` P ) e. ( SubRing ` S ) -> ( ( A ` ran V ) e. ( SubRing ` P ) <-> ( ( A ` ran V ) e. ( SubRing ` S ) /\ ( A ` ran V ) C_ ( Base ` P ) ) ) ) |
| 53 | 26 52 | syl | |- ( ph -> ( ( A ` ran V ) e. ( SubRing ` P ) <-> ( ( A ` ran V ) e. ( SubRing ` S ) /\ ( A ` ran V ) C_ ( Base ` P ) ) ) ) |
| 54 | 50 31 53 | mpbir2and | |- ( ph -> ( A ` ran V ) e. ( SubRing ` P ) ) |
| 55 | subrgsubg | |- ( ( A ` ran V ) e. ( SubRing ` P ) -> ( A ` ran V ) e. ( SubGrp ` P ) ) |
|
| 56 | 54 55 | syl | |- ( ph -> ( A ` ran V ) e. ( SubGrp ` P ) ) |
| 57 | 56 | adantr | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( A ` ran V ) e. ( SubGrp ` P ) ) |
| 58 | 1 5 13 | mpllmodd | |- ( ph -> P e. LMod ) |
| 59 | 58 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> P e. LMod ) |
| 60 | 4 9 28 | asplss | |- ( ( S e. AssAlg /\ ran V C_ ( Base ` S ) ) -> ( A ` ran V ) e. ( LSubSp ` S ) ) |
| 61 | 7 48 60 | syl2anc | |- ( ph -> ( A ` ran V ) e. ( LSubSp ` S ) ) |
| 62 | 2 5 13 | psrlmod | |- ( ph -> S e. LMod ) |
| 63 | eqid | |- ( LSubSp ` P ) = ( LSubSp ` P ) |
|
| 64 | 51 28 63 | lsslss | |- ( ( S e. LMod /\ ( Base ` P ) e. ( LSubSp ` S ) ) -> ( ( A ` ran V ) e. ( LSubSp ` P ) <-> ( ( A ` ran V ) e. ( LSubSp ` S ) /\ ( A ` ran V ) C_ ( Base ` P ) ) ) ) |
| 65 | 62 27 64 | syl2anc | |- ( ph -> ( ( A ` ran V ) e. ( LSubSp ` P ) <-> ( ( A ` ran V ) e. ( LSubSp ` S ) /\ ( A ` ran V ) C_ ( Base ` P ) ) ) ) |
| 66 | 61 31 65 | mpbir2and | |- ( ph -> ( A ` ran V ) e. ( LSubSp ` P ) ) |
| 67 | 66 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( A ` ran V ) e. ( LSubSp ` P ) ) |
| 68 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 69 | 1 68 8 32 38 | mplelf | |- ( ( ph /\ x e. ( Base ` P ) ) -> x : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 70 | 69 | ffvelcdmda | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( x ` k ) e. ( Base ` R ) ) |
| 71 | 1 35 37 | mplsca | |- ( ( ph /\ x e. ( Base ` P ) ) -> R = ( Scalar ` P ) ) |
| 72 | 71 | adantr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> R = ( Scalar ` P ) ) |
| 73 | 72 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 74 | 70 73 | eleqtrd | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( x ` k ) e. ( Base ` ( Scalar ` P ) ) ) |
| 75 | 5 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> I e. W ) |
| 76 | eqid | |- ( mulGrp ` P ) = ( mulGrp ` P ) |
|
| 77 | eqid | |- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
|
| 78 | 6 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> R e. CRing ) |
| 79 | simpr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) |
|
| 80 | 1 32 33 34 75 76 77 3 78 79 | mplcoe2 | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) = ( ( mulGrp ` P ) gsum ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) ) ) |
| 81 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 82 | 76 81 | ringidval | |- ( 1r ` P ) = ( 0g ` ( mulGrp ` P ) ) |
| 83 | 1 | mplcrng | |- ( ( I e. W /\ R e. CRing ) -> P e. CRing ) |
| 84 | 5 6 83 | syl2anc | |- ( ph -> P e. CRing ) |
| 85 | 76 | crngmgp | |- ( P e. CRing -> ( mulGrp ` P ) e. CMnd ) |
| 86 | 84 85 | syl | |- ( ph -> ( mulGrp ` P ) e. CMnd ) |
| 87 | 86 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( mulGrp ` P ) e. CMnd ) |
| 88 | 54 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( A ` ran V ) e. ( SubRing ` P ) ) |
| 89 | 76 | subrgsubm | |- ( ( A ` ran V ) e. ( SubRing ` P ) -> ( A ` ran V ) e. ( SubMnd ` ( mulGrp ` P ) ) ) |
| 90 | 88 89 | syl | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( A ` ran V ) e. ( SubMnd ` ( mulGrp ` P ) ) ) |
| 91 | simplll | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. I ) -> ph ) |
|
| 92 | 32 | psrbag | |- ( I e. W -> ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } <-> ( k : I --> NN0 /\ ( `' k " NN ) e. Fin ) ) ) |
| 93 | 35 92 | syl | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } <-> ( k : I --> NN0 /\ ( `' k " NN ) e. Fin ) ) ) |
| 94 | 93 | biimpa | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( k : I --> NN0 /\ ( `' k " NN ) e. Fin ) ) |
| 95 | 94 | simpld | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> k : I --> NN0 ) |
| 96 | 95 | ffvelcdmda | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. I ) -> ( k ` z ) e. NN0 ) |
| 97 | 4 9 | aspssid | |- ( ( S e. AssAlg /\ ran V C_ ( Base ` S ) ) -> ran V C_ ( A ` ran V ) ) |
| 98 | 7 48 97 | syl2anc | |- ( ph -> ran V C_ ( A ` ran V ) ) |
| 99 | 98 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. I ) -> ran V C_ ( A ` ran V ) ) |
| 100 | 15 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> V Fn I ) |
| 101 | fnfvelrn | |- ( ( V Fn I /\ z e. I ) -> ( V ` z ) e. ran V ) |
|
| 102 | 100 101 | sylan | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. I ) -> ( V ` z ) e. ran V ) |
| 103 | 99 102 | sseldd | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. I ) -> ( V ` z ) e. ( A ` ran V ) ) |
| 104 | 76 8 | mgpbas | |- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
| 105 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 106 | 76 105 | mgpplusg | |- ( .r ` P ) = ( +g ` ( mulGrp ` P ) ) |
| 107 | 105 | subrgmcl | |- ( ( ( A ` ran V ) e. ( SubRing ` P ) /\ u e. ( A ` ran V ) /\ v e. ( A ` ran V ) ) -> ( u ( .r ` P ) v ) e. ( A ` ran V ) ) |
| 108 | 54 107 | syl3an1 | |- ( ( ph /\ u e. ( A ` ran V ) /\ v e. ( A ` ran V ) ) -> ( u ( .r ` P ) v ) e. ( A ` ran V ) ) |
| 109 | 81 | subrg1cl | |- ( ( A ` ran V ) e. ( SubRing ` P ) -> ( 1r ` P ) e. ( A ` ran V ) ) |
| 110 | 54 109 | syl | |- ( ph -> ( 1r ` P ) e. ( A ` ran V ) ) |
| 111 | 104 77 106 86 31 108 82 110 | mulgnn0subcl | |- ( ( ph /\ ( k ` z ) e. NN0 /\ ( V ` z ) e. ( A ` ran V ) ) -> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) e. ( A ` ran V ) ) |
| 112 | 91 96 103 111 | syl3anc | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. I ) -> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) e. ( A ` ran V ) ) |
| 113 | 112 | fmpttd | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) : I --> ( A ` ran V ) ) |
| 114 | 5 | mptexd | |- ( ph -> ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) e. _V ) |
| 115 | 114 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) e. _V ) |
| 116 | funmpt | |- Fun ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) |
|
| 117 | 116 | a1i | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> Fun ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) ) |
| 118 | fvexd | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( 1r ` P ) e. _V ) |
|
| 119 | 94 | simprd | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( `' k " NN ) e. Fin ) |
| 120 | elrabi | |- ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } -> k e. ( NN0 ^m I ) ) |
|
| 121 | elmapi | |- ( k e. ( NN0 ^m I ) -> k : I --> NN0 ) |
|
| 122 | 121 | adantl | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( NN0 ^m I ) ) -> k : I --> NN0 ) |
| 123 | 5 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( NN0 ^m I ) ) -> I e. W ) |
| 124 | fcdmnn0supp | |- ( ( I e. W /\ k : I --> NN0 ) -> ( k supp 0 ) = ( `' k " NN ) ) |
|
| 125 | 123 122 124 | syl2anc | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( NN0 ^m I ) ) -> ( k supp 0 ) = ( `' k " NN ) ) |
| 126 | eqimss | |- ( ( k supp 0 ) = ( `' k " NN ) -> ( k supp 0 ) C_ ( `' k " NN ) ) |
|
| 127 | 125 126 | syl | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( NN0 ^m I ) ) -> ( k supp 0 ) C_ ( `' k " NN ) ) |
| 128 | c0ex | |- 0 e. _V |
|
| 129 | 128 | a1i | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( NN0 ^m I ) ) -> 0 e. _V ) |
| 130 | 122 127 123 129 | suppssr | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( NN0 ^m I ) ) /\ z e. ( I \ ( `' k " NN ) ) ) -> ( k ` z ) = 0 ) |
| 131 | 120 130 | sylanl2 | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. ( I \ ( `' k " NN ) ) ) -> ( k ` z ) = 0 ) |
| 132 | 131 | oveq1d | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. ( I \ ( `' k " NN ) ) ) -> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) |
| 133 | 5 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. ( I \ ( `' k " NN ) ) ) -> I e. W ) |
| 134 | 13 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. ( I \ ( `' k " NN ) ) ) -> R e. Ring ) |
| 135 | eldifi | |- ( z e. ( I \ ( `' k " NN ) ) -> z e. I ) |
|
| 136 | 135 | adantl | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. ( I \ ( `' k " NN ) ) ) -> z e. I ) |
| 137 | 1 3 8 133 134 136 | mvrcl | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. ( I \ ( `' k " NN ) ) ) -> ( V ` z ) e. ( Base ` P ) ) |
| 138 | 104 82 77 | mulg0 | |- ( ( V ` z ) e. ( Base ` P ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) = ( 1r ` P ) ) |
| 139 | 137 138 | syl | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. ( I \ ( `' k " NN ) ) ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) = ( 1r ` P ) ) |
| 140 | 132 139 | eqtrd | |- ( ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ z e. ( I \ ( `' k " NN ) ) ) -> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) = ( 1r ` P ) ) |
| 141 | 140 75 | suppss2 | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) supp ( 1r ` P ) ) C_ ( `' k " NN ) ) |
| 142 | suppssfifsupp | |- ( ( ( ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) e. _V /\ Fun ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) /\ ( 1r ` P ) e. _V ) /\ ( ( `' k " NN ) e. Fin /\ ( ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) supp ( 1r ` P ) ) C_ ( `' k " NN ) ) ) -> ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) finSupp ( 1r ` P ) ) |
|
| 143 | 115 117 118 119 141 142 | syl32anc | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) finSupp ( 1r ` P ) ) |
| 144 | 82 87 75 90 113 143 | gsumsubmcl | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( ( mulGrp ` P ) gsum ( z e. I |-> ( ( k ` z ) ( .g ` ( mulGrp ` P ) ) ( V ` z ) ) ) ) e. ( A ` ran V ) ) |
| 145 | 80 144 | eqeltrd | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) e. ( A ` ran V ) ) |
| 146 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 147 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 148 | 146 36 147 63 | lssvscl | |- ( ( ( P e. LMod /\ ( A ` ran V ) e. ( LSubSp ` P ) ) /\ ( ( x ` k ) e. ( Base ` ( Scalar ` P ) ) /\ ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) e. ( A ` ran V ) ) ) -> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) e. ( A ` ran V ) ) |
| 149 | 59 67 74 145 148 | syl22anc | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) e. ( A ` ran V ) ) |
| 150 | 149 | fmpttd | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( A ` ran V ) ) |
| 151 | 45 | mptrabex | |- ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) e. _V |
| 152 | funmpt | |- Fun ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
|
| 153 | fvex | |- ( 0g ` P ) e. _V |
|
| 154 | 151 152 153 | 3pm3.2i | |- ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) e. _V /\ Fun ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) /\ ( 0g ` P ) e. _V ) |
| 155 | 154 | a1i | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) e. _V /\ Fun ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) /\ ( 0g ` P ) e. _V ) ) |
| 156 | 1 2 9 33 8 | mplelbas | |- ( x e. ( Base ` P ) <-> ( x e. ( Base ` S ) /\ x finSupp ( 0g ` R ) ) ) |
| 157 | 156 | simprbi | |- ( x e. ( Base ` P ) -> x finSupp ( 0g ` R ) ) |
| 158 | 157 | adantl | |- ( ( ph /\ x e. ( Base ` P ) ) -> x finSupp ( 0g ` R ) ) |
| 159 | 158 | fsuppimpd | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( x supp ( 0g ` R ) ) e. Fin ) |
| 160 | ssidd | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( x supp ( 0g ` R ) ) C_ ( x supp ( 0g ` R ) ) ) |
|
| 161 | fvexd | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( 0g ` R ) e. _V ) |
|
| 162 | 69 160 47 161 | suppssr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ ( x supp ( 0g ` R ) ) ) ) -> ( x ` k ) = ( 0g ` R ) ) |
| 163 | 71 | fveq2d | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 164 | 163 | adantr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ ( x supp ( 0g ` R ) ) ) ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 165 | 162 164 | eqtrd | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ ( x supp ( 0g ` R ) ) ) ) -> ( x ` k ) = ( 0g ` ( Scalar ` P ) ) ) |
| 166 | 165 | oveq1d | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ ( x supp ( 0g ` R ) ) ) ) -> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
| 167 | eldifi | |- ( k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ ( x supp ( 0g ` R ) ) ) -> k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) |
|
| 168 | 13 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> R e. Ring ) |
| 169 | 1 8 33 34 32 75 168 79 | mplmon | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) e. ( Base ` P ) ) |
| 170 | eqid | |- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
|
| 171 | 8 146 36 170 40 | lmod0vs | |- ( ( P e. LMod /\ ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) e. ( Base ` P ) ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( 0g ` P ) ) |
| 172 | 59 169 171 | syl2anc | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( 0g ` P ) ) |
| 173 | 167 172 | sylan2 | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ ( x supp ( 0g ` R ) ) ) ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( 0g ` P ) ) |
| 174 | 166 173 | eqtrd | |- ( ( ( ph /\ x e. ( Base ` P ) ) /\ k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ ( x supp ( 0g ` R ) ) ) ) -> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( 0g ` P ) ) |
| 175 | 174 47 | suppss2 | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) supp ( 0g ` P ) ) C_ ( x supp ( 0g ` R ) ) ) |
| 176 | suppssfifsupp | |- ( ( ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) e. _V /\ Fun ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) /\ ( 0g ` P ) e. _V ) /\ ( ( x supp ( 0g ` R ) ) e. Fin /\ ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) supp ( 0g ` P ) ) C_ ( x supp ( 0g ` R ) ) ) ) -> ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) finSupp ( 0g ` P ) ) |
|
| 177 | 155 159 175 176 | syl12anc | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) finSupp ( 0g ` P ) ) |
| 178 | 40 44 47 57 150 177 | gsumsubgcl | |- ( ( ph /\ x e. ( Base ` P ) ) -> ( P gsum ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( ( x ` k ) ( .s ` P ) ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = k , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) ) e. ( A ` ran V ) ) |
| 179 | 39 178 | eqeltrd | |- ( ( ph /\ x e. ( Base ` P ) ) -> x e. ( A ` ran V ) ) |
| 180 | 31 179 | eqelssd | |- ( ph -> ( A ` ran V ) = ( Base ` P ) ) |