This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| aspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| aspval.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | asplss | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) ∈ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| 2 | aspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | aspval.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 4 | 1 2 3 | aspval | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 5 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) |
| 7 | ssrab2 | ⊢ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ⊆ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) | |
| 8 | inss2 | ⊢ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ⊆ 𝐿 | |
| 9 | 7 8 | sstri | ⊢ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ⊆ 𝐿 |
| 10 | 9 | a1i | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ⊆ 𝐿 ) |
| 11 | fvex | ⊢ ( 𝐴 ‘ 𝑆 ) ∈ V | |
| 12 | 4 11 | eqeltrrdi | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) |
| 13 | intex | ⊢ ( { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ↔ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ) |
| 15 | 3 | lssintcl | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ⊆ 𝐿 ∧ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ 𝐿 ) |
| 16 | 6 10 14 15 | syl3anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ 𝐿 ) |
| 17 | 4 16 | eqeltrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) ∈ 𝐿 ) |