This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidval.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| ringidval.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | ringidval | ⊢ 1 = ( 0g ‘ 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidval.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 2 | ringidval.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | df-ur | ⊢ 1r = ( 0g ∘ mulGrp ) | |
| 4 | 3 | fveq1i | ⊢ ( 1r ‘ 𝑅 ) = ( ( 0g ∘ mulGrp ) ‘ 𝑅 ) |
| 5 | fnmgp | ⊢ mulGrp Fn V | |
| 6 | fvco2 | ⊢ ( ( mulGrp Fn V ∧ 𝑅 ∈ V ) → ( ( 0g ∘ mulGrp ) ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝑅 ∈ V → ( ( 0g ∘ mulGrp ) ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 8 | 4 7 | eqtrid | ⊢ ( 𝑅 ∈ V → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 9 | 0g0 | ⊢ ∅ = ( 0g ‘ ∅ ) | |
| 10 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( 1r ‘ 𝑅 ) = ∅ ) | |
| 11 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ∅ ) | |
| 12 | 11 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ∅ ) ) |
| 13 | 9 10 12 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 14 | 8 13 | pm2.61i | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 15 | 1 | fveq2i | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 16 | 14 2 15 | 3eqtr4i | ⊢ 1 = ( 0g ‘ 𝐺 ) |