This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | psrlmod | ⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) | |
| 6 | 1 2 3 | psrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| 7 | eqidd | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) ) | |
| 8 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 9 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) | |
| 10 | eqidd | ⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) ) | |
| 11 | eqidd | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) | |
| 12 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 14 | 1 2 13 | psrgrp | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 15 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 16 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 17 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 18 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 19 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 20 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 21 | 1 15 16 17 18 19 20 | psrvscacl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 22 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 23 | 22 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 24 | 23 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 25 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 26 | fconst6g | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 28 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 29 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 30 | 1 16 28 17 29 | psrelbas | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 31 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) | |
| 32 | 1 16 28 17 31 | psrelbas | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 33 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
| 34 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 35 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 36 | 16 34 35 | ringdi | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( .r ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) = ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) ( 𝑟 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 37 | 33 36 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑟 ( .r ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) = ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) ( 𝑟 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 38 | 24 27 30 32 37 | caofdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 39 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 40 | 1 17 34 39 29 31 | psradd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 42 | 1 15 16 17 35 28 25 29 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 43 | 1 15 16 17 35 28 25 31 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 44 | 42 43 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 45 | 38 41 44 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 46 | 13 | grpmgmd | ⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Mgm ) |
| 48 | 1 17 39 47 29 31 | psraddcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
| 49 | 1 15 16 17 35 28 25 48 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) |
| 50 | 21 | 3adant3r3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 51 | 1 15 16 17 33 25 31 | psrvscacl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
| 52 | 1 17 34 39 50 51 | psradd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 53 | 45 49 52 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 54 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 55 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) | |
| 56 | 1 15 16 17 35 28 54 55 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 57 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) | |
| 58 | 1 15 16 17 35 28 57 55 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 59 | 56 58 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 60 | 23 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 61 | 1 16 28 17 55 | psrelbas | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 62 | 54 26 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 63 | fconst6g | ⊢ ( 𝑦 ∈ ( Base ‘ 𝑅 ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) | |
| 64 | 57 63 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 65 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
| 66 | 16 34 35 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( .r ‘ 𝑅 ) 𝑡 ) = ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑡 ) ( +g ‘ 𝑅 ) ( 𝑠 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 67 | 65 66 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( .r ‘ 𝑅 ) 𝑡 ) = ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑡 ) ( +g ‘ 𝑅 ) ( 𝑠 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 68 | 60 61 62 64 67 | caofdir | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( +g ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 69 | 60 54 57 | ofc12 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( +g ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) = ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) } ) ) |
| 70 | 69 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( +g ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 71 | 59 68 70 | 3eqtr2rd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 72 | 16 34 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 73 | 65 54 57 72 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 74 | 1 15 16 17 35 28 73 55 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 75 | 1 15 16 17 65 54 55 | psrvscacl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
| 76 | 1 15 16 17 65 57 55 | psrvscacl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
| 77 | 1 17 34 39 75 76 | psradd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 78 | 71 74 77 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 79 | 58 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 80 | 16 35 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑠 ) ( .r ‘ 𝑅 ) 𝑡 ) = ( 𝑟 ( .r ‘ 𝑅 ) ( 𝑠 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 81 | 65 80 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( .r ‘ 𝑅 ) 𝑠 ) ( .r ‘ 𝑅 ) 𝑡 ) = ( 𝑟 ( .r ‘ 𝑅 ) ( 𝑠 ( .r ‘ 𝑅 ) 𝑡 ) ) ) |
| 82 | 60 62 64 61 81 | caofass | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 83 | 60 54 57 | ofc12 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) = ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) } ) ) |
| 84 | 83 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑦 } ) ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 85 | 79 82 84 | 3eqtr2rd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 86 | 16 35 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 87 | 65 54 57 86 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 88 | 1 15 16 17 35 28 87 55 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 89 | 1 15 16 17 35 28 54 76 | psrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 90 | 85 88 89 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( ·𝑠 ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) ) |
| 91 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 92 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 93 | 16 92 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 94 | 91 93 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 95 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 96 | 1 15 16 17 35 28 94 95 | psrvsca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑆 ) 𝑥 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 1r ‘ 𝑅 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 97 | 23 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 98 | 1 16 28 17 95 | psrelbas | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 99 | 16 35 92 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑟 ) = 𝑟 ) |
| 100 | 91 99 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑟 ) = 𝑟 ) |
| 101 | 97 98 94 100 | caofid0l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 1r ‘ 𝑅 ) } ) ∘f ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 102 | 96 101 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑆 ) 𝑥 ) = 𝑥 ) |
| 103 | 4 5 6 7 8 9 10 11 3 14 21 53 78 90 102 | islmodd | ⊢ ( 𝜑 → 𝑆 ∈ LMod ) |