This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrcl.s | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mvrcl.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mvrcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mvrcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mvrcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| Assertion | mvrcl | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrcl.s | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mvrcl.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 3 | mvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | mvrcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | mvrcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | mvrcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 7 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 9 | 7 2 8 4 5 6 | mvrcl2 | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 10 | fvexd | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ V ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 13 | 7 11 12 8 9 | psrelbas | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | ffund | ⊢ ( 𝜑 → Fun ( 𝑉 ‘ 𝑋 ) ) |
| 15 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 16 | snfi | ⊢ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin | |
| 17 | 16 | a1i | ⊢ ( 𝜑 → { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin ) |
| 18 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 19 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 20 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝐼 ∈ 𝑊 ) |
| 21 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑅 ∈ Ring ) |
| 22 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑋 ∈ 𝐼 ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) | |
| 24 | eldifsn | ⊢ ( 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ↔ ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑥 ≠ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑥 ≠ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
| 26 | 25 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 27 | 2 12 18 19 20 21 22 26 | mvrval2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑥 ) = if ( 𝑥 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 28 | 25 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → 𝑥 ≠ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
| 29 | 28 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ¬ 𝑥 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) |
| 30 | 29 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → if ( 𝑥 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 31 | 27 30 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 32 | 13 31 | suppss | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) |
| 33 | suppssfifsupp | ⊢ ( ( ( ( 𝑉 ‘ 𝑋 ) ∈ V ∧ Fun ( 𝑉 ‘ 𝑋 ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ∈ Fin ∧ ( ( 𝑉 ‘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) } ) ) → ( 𝑉 ‘ 𝑋 ) finSupp ( 0g ‘ 𝑅 ) ) | |
| 34 | 10 14 15 17 32 33 | syl32anc | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) finSupp ( 0g ‘ 𝑅 ) ) |
| 35 | 1 7 8 18 3 | mplelbas | ⊢ ( ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ↔ ( ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑉 ‘ 𝑋 ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 36 | 9 34 35 | sylanbrc | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ) |