This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgpval.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| mgpval.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | mgpplusg | ⊢ · = ( +g ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | mgpval.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | 2 | fvexi | ⊢ · ∈ V |
| 4 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 5 | 4 | setsid | ⊢ ( ( 𝑅 ∈ V ∧ · ∈ V ) → · = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) ) |
| 6 | 3 5 | mpan2 | ⊢ ( 𝑅 ∈ V → · = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) ) |
| 7 | 1 2 | mgpval | ⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) |
| 8 | 7 | fveq2i | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) |
| 9 | 6 8 | eqtr4di | ⊢ ( 𝑅 ∈ V → · = ( +g ‘ 𝑀 ) ) |
| 10 | 4 | str0 | ⊢ ∅ = ( +g ‘ ∅ ) |
| 11 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( .r ‘ 𝑅 ) = ∅ ) | |
| 12 | 2 11 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → · = ∅ ) |
| 13 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ∅ ) | |
| 14 | 1 13 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑀 = ∅ ) |
| 15 | 14 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ ∅ ) ) |
| 16 | 10 12 15 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → · = ( +g ‘ 𝑀 ) ) |
| 17 | 9 16 | pm2.61i | ⊢ · = ( +g ‘ 𝑀 ) |