This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrgsubg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 2 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Grp ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | 4 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 6 | eqid | ⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) | |
| 7 | 6 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
| 8 | ringgrp | ⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
| 10 | 4 | issubg | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝑅 ∈ Grp ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Grp ) ) |
| 11 | 3 5 9 10 | syl3anbrc | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |