This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| mplsubg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| mplsubg.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| mplsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mpllss.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | mplsubrg | ⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mplsubg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | mplsubg.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 4 | mplsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | mpllss.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 8 | 1 2 3 4 7 | mplsubg | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 9 | 1 4 5 | psrring | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 12 | 10 11 | ringidcl | ⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 13 | 9 12 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 14 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 15 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 16 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 17 | 1 4 5 14 15 16 11 | psr1 | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 18 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 19 | 18 | mptrabex | ⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V |
| 20 | funmpt | ⊢ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) | |
| 21 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 22 | 19 20 21 | 3pm3.2i | ⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
| 23 | 22 | a1i | ⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ) |
| 24 | snfi | ⊢ { ( 𝐼 × { 0 } ) } ∈ Fin | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → { ( 𝐼 × { 0 } ) } ∈ Fin ) |
| 26 | eldifsni | ⊢ ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) → 𝑘 ≠ ( 𝐼 × { 0 } ) ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) ) → 𝑘 ≠ ( 𝐼 × { 0 } ) ) |
| 28 | ifnefalse | ⊢ ( 𝑘 ≠ ( 𝐼 × { 0 } ) → if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) ) → if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 30 | 18 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 31 | 30 | a1i | ⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 32 | 29 31 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝐼 × { 0 } ) } ) |
| 33 | suppssfifsupp | ⊢ ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { ( 𝐼 × { 0 } ) } ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) | |
| 34 | 23 25 32 33 | syl12anc | ⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 35 | 17 34 | eqbrtrd | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) finSupp ( 0g ‘ 𝑅 ) ) |
| 36 | 2 1 10 15 3 | mplelbas | ⊢ ( ( 1r ‘ 𝑆 ) ∈ 𝑈 ↔ ( ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 37 | 13 35 36 | sylanbrc | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝑈 ) |
| 38 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐼 ∈ 𝑊 ) |
| 39 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) |
| 40 | eqid | ⊢ ( ∘f + “ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) × ( 𝑦 supp ( 0g ‘ 𝑅 ) ) ) ) = ( ∘f + “ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) × ( 𝑦 supp ( 0g ‘ 𝑅 ) ) ) ) | |
| 41 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 42 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) | |
| 43 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) | |
| 44 | 1 2 3 38 39 14 15 40 41 42 43 | mplsubrglem | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) |
| 45 | 44 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) |
| 46 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 47 | 10 11 46 | issubrg2 | ⊢ ( 𝑆 ∈ Ring → ( 𝑈 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) ) ) |
| 48 | 9 47 | syl | ⊢ ( 𝜑 → ( 𝑈 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) ) ) |
| 49 | 8 37 45 48 | mpbir3and | ⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝑆 ) ) |