This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmon.s | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplmon.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplmon.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplmon.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mplmon.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplmon.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplmon.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) | ||
| Assertion | mplmon | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon.s | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplmon.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mplmon.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplmon.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mplmon.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 6 | mplmon.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | mplmon.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 8 | mplmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 10 | 9 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 11 | 9 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 12 | 10 11 | ifcld | ⊢ ( 𝑅 ∈ Ring → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 14 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 17 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 18 | 5 17 | rabex2 | ⊢ 𝐷 ∈ V |
| 19 | 16 18 | elmap | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 20 | 15 19 | sylibr | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 21 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 22 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 23 | 21 9 5 22 6 | psrbas | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 24 | 20 23 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 25 | 18 | mptex | ⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V |
| 26 | funmpt | ⊢ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) | |
| 27 | 3 | fvexi | ⊢ 0 ∈ V |
| 28 | 25 26 27 | 3pm3.2i | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∧ 0 ∈ V ) |
| 29 | 28 | a1i | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∧ 0 ∈ V ) ) |
| 30 | snfi | ⊢ { 𝑋 } ∈ Fin | |
| 31 | 30 | a1i | ⊢ ( 𝜑 → { 𝑋 } ∈ Fin ) |
| 32 | eldifsni | ⊢ ( 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) → 𝑦 ≠ 𝑋 ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → 𝑦 ≠ 𝑋 ) |
| 34 | 33 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → ¬ 𝑦 = 𝑋 ) |
| 35 | 34 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → if ( 𝑦 = 𝑋 , 1 , 0 ) = 0 ) |
| 36 | 18 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 37 | 35 36 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
| 38 | suppssfifsupp | ⊢ ( ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∧ 0 ∈ V ) ∧ ( { 𝑋 } ∈ Fin ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) finSupp 0 ) | |
| 39 | 29 31 37 38 | syl12anc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) finSupp 0 ) |
| 40 | 1 21 22 3 2 | mplelbas | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐵 ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) finSupp 0 ) ) |
| 41 | 24 39 40 | sylanbrc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐵 ) |