This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulg0.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mulg0.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulg0.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | mulg0.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | 0z | ⊢ 0 ∈ ℤ | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 7 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 8 | 1 5 2 6 3 7 | mulgval | ⊢ ( ( 0 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = if ( 0 = 0 , 0 , if ( 0 < 0 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 0 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 0 ) ) ) ) ) |
| 9 | eqid | ⊢ 0 = 0 | |
| 10 | 9 | iftruei | ⊢ if ( 0 = 0 , 0 , if ( 0 < 0 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 0 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 0 ) ) ) ) = 0 |
| 11 | 8 10 | eqtrdi | ⊢ ( ( 0 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = 0 ) |
| 12 | 4 11 | mpan | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |