This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017) Remove disjoint variable condition on A , x and avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrabi | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑉 ∣ 𝜑 } → 𝐴 ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclel | ⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ) ) | |
| 2 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ) | |
| 3 | simpl | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → 𝑥 ∈ 𝑉 ) | |
| 4 | 3 | sbimi | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑉 ) |
| 5 | clelsb1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑉 ↔ 𝑦 ∈ 𝑉 ) | |
| 6 | 4 5 | sylib | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → 𝑦 ∈ 𝑉 ) |
| 7 | 2 6 | sylbi | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } → 𝑦 ∈ 𝑉 ) |
| 8 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) | |
| 9 | 8 | biimpa | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 10 | 7 9 | sylan2 | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ) → 𝐴 ∈ 𝑉 ) |
| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ) → 𝐴 ∈ 𝑉 ) |
| 12 | 1 11 | sylbi | ⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } → 𝐴 ∈ 𝑉 ) |
| 13 | df-rab | ⊢ { 𝑥 ∈ 𝑉 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } | |
| 14 | 12 13 | eleq2s | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑉 ∣ 𝜑 } → 𝐴 ∈ 𝑉 ) |