This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgsubm.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| Assertion | subrgsubm | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgsubm.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 2 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 4 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 5 | 4 | subrg1cl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐴 ) |
| 6 | subrgrcl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 7 | eqid | ⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) | |
| 8 | 7 1 | mgpress | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 9 | 6 8 | mpancom | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 10 | 7 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
| 11 | eqid | ⊢ ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) | |
| 12 | 11 | ringmgp | ⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring → ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ∈ Mnd ) |
| 13 | 10 12 | syl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ∈ Mnd ) |
| 14 | 9 13 | eqeltrd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) |
| 15 | 1 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 16 | 1 2 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 17 | 1 4 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 18 | eqid | ⊢ ( 𝑀 ↾s 𝐴 ) = ( 𝑀 ↾s 𝐴 ) | |
| 19 | 16 17 18 | issubm2 | ⊢ ( 𝑀 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ) ) |
| 20 | 6 15 19 | 3syl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ) ) |
| 21 | 3 5 14 20 | mpbir3and | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) |