This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsslss.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| lsslss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lsslss.t | ⊢ 𝑇 = ( LSubSp ‘ 𝑋 ) | ||
| Assertion | lsslss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑉 ∈ 𝑇 ↔ ( 𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslss.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | lsslss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lsslss.t | ⊢ 𝑇 = ( LSubSp ‘ 𝑋 ) | |
| 4 | 1 2 | lsslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 5 | eqid | ⊢ ( 𝑋 ↾s 𝑉 ) = ( 𝑋 ↾s 𝑉 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 7 | 5 6 3 | islss3 | ⊢ ( 𝑋 ∈ LMod → ( 𝑉 ∈ 𝑇 ↔ ( 𝑉 ⊆ ( Base ‘ 𝑋 ) ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 8 | 4 7 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑉 ∈ 𝑇 ↔ ( 𝑉 ⊆ ( Base ‘ 𝑋 ) ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 10 | 9 2 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 12 | 1 9 | ressbas2 | ⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 14 | 13 | sseq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑉 ⊆ 𝑈 ↔ 𝑉 ⊆ ( Base ‘ 𝑋 ) ) ) |
| 15 | 14 | anbi1d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑉 ⊆ 𝑈 ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ↔ ( 𝑉 ⊆ ( Base ‘ 𝑋 ) ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 16 | sstr2 | ⊢ ( 𝑉 ⊆ 𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑉 ⊆ ( Base ‘ 𝑊 ) ) ) | |
| 17 | 11 16 | mpan9 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ⊆ ( Base ‘ 𝑊 ) ) |
| 18 | 17 | biantrurd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑊 ↾s 𝑉 ) ∈ LMod ↔ ( 𝑉 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 19 | 1 | oveq1i | ⊢ ( 𝑋 ↾s 𝑉 ) = ( ( 𝑊 ↾s 𝑈 ) ↾s 𝑉 ) |
| 20 | ressabs | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑊 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝑊 ↾s 𝑉 ) ) | |
| 21 | 20 | adantll | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑊 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝑊 ↾s 𝑉 ) ) |
| 22 | 19 21 | eqtrid | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑋 ↾s 𝑉 ) = ( 𝑊 ↾s 𝑉 ) ) |
| 23 | 22 | eleq1d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑋 ↾s 𝑉 ) ∈ LMod ↔ ( 𝑊 ↾s 𝑉 ) ∈ LMod ) ) |
| 24 | eqid | ⊢ ( 𝑊 ↾s 𝑉 ) = ( 𝑊 ↾s 𝑉 ) | |
| 25 | 24 9 2 | islss3 | ⊢ ( 𝑊 ∈ LMod → ( 𝑉 ∈ 𝑆 ↔ ( 𝑉 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑉 ∈ 𝑆 ↔ ( 𝑉 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 27 | 18 23 26 | 3bitr4d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑋 ↾s 𝑉 ) ∈ LMod ↔ 𝑉 ∈ 𝑆 ) ) |
| 28 | 27 | pm5.32da | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑉 ⊆ 𝑈 ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ↔ ( 𝑉 ⊆ 𝑈 ∧ 𝑉 ∈ 𝑆 ) ) ) |
| 29 | 28 | biancomd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑉 ⊆ 𝑈 ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ↔ ( 𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ) ) ) |
| 30 | 8 15 29 | 3bitr2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑉 ∈ 𝑇 ↔ ( 𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ) ) ) |