This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnnsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnnsubcl.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnnsubcl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mulgnnsubcl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| mulgnnsubcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| mulgnnsubcl.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| mulgnn0subcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mulgnn0subcl.c | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) | ||
| Assertion | mulgnn0subcl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnnsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnnsubcl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnnsubcl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | mulgnnsubcl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 5 | mulgnnsubcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 6 | mulgnnsubcl.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 7 | mulgnn0subcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 8 | mulgnn0subcl.c | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) | |
| 9 | 1 2 3 4 5 6 | mulgnnsubcl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 10 | 9 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 11 | 10 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 12 | 11 | 3adantl2 | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 13 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 14 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 15 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 16 | 14 15 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 17 | 1 7 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 0 · 𝑋 ) = 0 ) |
| 19 | 13 18 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = 0 ) |
| 20 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 0 ∈ 𝑆 ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 0 ∈ 𝑆 ) |
| 22 | 19 21 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 23 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℕ0 ) | |
| 24 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 26 | 12 22 25 | mpjaodan | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |