This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqelssd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| eqelssd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) | ||
| Assertion | eqelssd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | eqelssd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) | |
| 3 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) |
| 4 | 3 | ssrdv | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 5 | 1 4 | eqssd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |