This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsubmcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| gsumsubmcl.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumsubmcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumsubmcl.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | ||
| gsumsubmcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| gsumsubmcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumsubmcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsubmcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | gsumsubmcl.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | gsumsubmcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | gsumsubmcl.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | gsumsubmcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 6 | gsumsubmcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 7 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 8 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 11 | 10 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | 5 12 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐺 ) ) |
| 14 | 10 7 2 13 | cntzcmnf | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
| 15 | 1 7 9 3 4 5 14 6 | gsumzsubmcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝑆 ) |