This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsubgcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| gsumsubgcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| gsumsubgcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumsubgcl.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| gsumsubgcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| gsumsubgcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumsubgcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsubgcl.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | gsumsubgcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 3 | gsumsubgcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | gsumsubgcl.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | gsumsubgcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 6 | gsumsubgcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 7 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 9 | subgsubm | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 11 | 1 8 3 10 5 6 | gsumsubmcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝑆 ) |