This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( ax-hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmod0vs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmod0vs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmod0vs.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmod0vs.o | ⊢ 𝑂 = ( 0g ‘ 𝐹 ) | ||
| lmod0vs.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod0vs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmod0vs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lmod0vs.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lmod0vs.o | ⊢ 𝑂 = ( 0g ‘ 𝐹 ) | |
| 5 | lmod0vs.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 6 | simpl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 7 | 2 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ Ring ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 10 | 9 4 | ring0cl | ⊢ ( 𝐹 ∈ Ring → 𝑂 ∈ ( Base ‘ 𝐹 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑂 ∈ ( Base ‘ 𝐹 ) ) |
| 12 | simpr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 13 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 15 | 1 13 2 3 9 14 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑂 ∈ ( Base ‘ 𝐹 ) ∧ 𝑂 ∈ ( Base ‘ 𝐹 ) ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) ) |
| 16 | 6 11 11 12 15 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) ) |
| 17 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 18 | 8 17 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ Grp ) |
| 19 | 9 14 4 | grplid | ⊢ ( ( 𝐹 ∈ Grp ∧ 𝑂 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) = 𝑂 ) |
| 20 | 18 11 19 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) = 𝑂 ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( 𝑂 · 𝑋 ) ) |
| 22 | 16 21 | eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) = ( 𝑂 · 𝑋 ) ) |
| 23 | 1 2 3 9 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑂 ∈ ( Base ‘ 𝐹 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) ∈ 𝑉 ) |
| 24 | 6 11 12 23 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) ∈ 𝑉 ) |
| 25 | 1 13 5 | lmod0vid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑂 · 𝑋 ) ∈ 𝑉 ) → ( ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) = ( 𝑂 · 𝑋 ) ↔ 0 = ( 𝑂 · 𝑋 ) ) ) |
| 26 | 24 25 | syldan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) = ( 𝑂 · 𝑋 ) ↔ 0 = ( 𝑂 · 𝑋 ) ) ) |
| 27 | 22 26 | mpbid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 0 = ( 𝑂 · 𝑋 ) ) |
| 28 | 27 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) = 0 ) |