This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplval2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplval2.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | ||
| mplval2.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| mplbasss.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | mplbasss | ⊢ 𝑈 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplval2.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 3 | mplval2.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 4 | mplbasss.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 6 | 1 2 4 5 3 | mplbas | ⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) } |
| 7 | 6 | ssrab3 | ⊢ 𝑈 ⊆ 𝐵 |