This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppssfifsupp | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → 𝐺 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi | ⊢ ( ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) → ( 𝐺 supp 𝑍 ) ∈ Fin ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → ( 𝐺 supp 𝑍 ) ∈ Fin ) |
| 3 | 3ancoma | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) ↔ ( Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) | |
| 4 | 3 | biimpi | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) → ( Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → ( Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) |
| 6 | funisfsupp | ⊢ ( ( Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) |
| 8 | 2 7 | mpbird | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝐹 ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ 𝐹 ) ) → 𝐺 finSupp 𝑍 ) |