This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for imasdsf1o . (Contributed by Mario Carneiro, 21-Aug-2015) (Proof shortened by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasdsf1o.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasdsf1o.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasdsf1o.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | ||
| imasdsf1o.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasdsf1o.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| imasdsf1o.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | ||
| imasdsf1o.m | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | ||
| imasdsf1o.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| imasdsf1o.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| imasdsf1o.w | ⊢ 𝑊 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | ||
| imasdsf1o.s | ⊢ 𝑆 = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } | ||
| imasdsf1o.t | ⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) | ||
| Assertion | imasdsf1olem | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasdsf1o.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasdsf1o.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasdsf1o.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | |
| 4 | imasdsf1o.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasdsf1o.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 6 | imasdsf1o.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | |
| 7 | imasdsf1o.m | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 8 | imasdsf1o.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | imasdsf1o.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | imasdsf1o.w | ⊢ 𝑊 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| 11 | imasdsf1o.s | ⊢ 𝑆 = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } | |
| 12 | imasdsf1o.t | ⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) | |
| 13 | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 15 | eqid | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) | |
| 16 | f1of | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 17 | 3 16 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 18 | 17 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
| 19 | 17 9 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
| 20 | 1 2 14 4 15 6 18 19 11 5 | imasdsval2 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) |
| 21 | 12 | infeq1i | ⊢ inf ( 𝑇 , ℝ* , < ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) |
| 22 | 20 21 | eqtr4di | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = inf ( 𝑇 , ℝ* , < ) ) |
| 23 | xrsbas | ⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) | |
| 24 | xrsadd | ⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) | |
| 25 | xrsex | ⊢ ℝ*𝑠 ∈ V | |
| 26 | 25 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ℝ*𝑠 ∈ V ) |
| 27 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 28 | difss | ⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* | |
| 29 | 28 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ* ∖ { -∞ } ) ⊆ ℝ* ) |
| 30 | xmetf | ⊢ ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) | |
| 31 | ffn | ⊢ ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* → 𝐸 Fn ( 𝑉 × 𝑉 ) ) | |
| 32 | 7 30 31 | 3syl | ⊢ ( 𝜑 → 𝐸 Fn ( 𝑉 × 𝑉 ) ) |
| 33 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ) | |
| 34 | xmetge0 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → 0 ≤ ( 𝑓 𝐸 𝑔 ) ) | |
| 35 | ge0nemnf | ⊢ ( ( ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ∧ 0 ≤ ( 𝑓 𝐸 𝑔 ) ) → ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) |
| 37 | eldifsn | ⊢ ( ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ↔ ( ( 𝑓 𝐸 𝑔 ) ∈ ℝ* ∧ ( 𝑓 𝐸 𝑔 ) ≠ -∞ ) ) | |
| 38 | 33 36 37 | sylanbrc | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 39 | 38 | 3expb | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 40 | 7 39 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉 ) ) → ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 41 | 40 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝑉 ∀ 𝑔 ∈ 𝑉 ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 42 | ffnov | ⊢ ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ↔ ( 𝐸 Fn ( 𝑉 × 𝑉 ) ∧ ∀ 𝑓 ∈ 𝑉 ∀ 𝑔 ∈ 𝑉 ( 𝑓 𝐸 𝑔 ) ∈ ( ℝ* ∖ { -∞ } ) ) ) | |
| 43 | 32 41 42 | sylanbrc | ⊢ ( 𝜑 → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 45 | 11 | ssrab3 | ⊢ 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) |
| 46 | 45 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
| 47 | 46 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
| 48 | elmapi | ⊢ ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
| 50 | fco | ⊢ ( ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ∧ 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) | |
| 51 | 44 49 50 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 52 | 0re | ⊢ 0 ∈ ℝ | |
| 53 | rexr | ⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) | |
| 54 | renemnf | ⊢ ( 0 ∈ ℝ → 0 ≠ -∞ ) | |
| 55 | eldifsn | ⊢ ( 0 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 0 ∈ ℝ* ∧ 0 ≠ -∞ ) ) | |
| 56 | 53 54 55 | sylanbrc | ⊢ ( 0 ∈ ℝ → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 57 | 52 56 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 58 | xaddlid | ⊢ ( 𝑥 ∈ ℝ* → ( 0 +𝑒 𝑥 ) = 𝑥 ) | |
| 59 | xaddrid | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 +𝑒 0 ) = 𝑥 ) | |
| 60 | 58 59 | jca | ⊢ ( 𝑥 ∈ ℝ* → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
| 61 | 60 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℝ* ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
| 62 | 23 24 10 26 27 29 51 57 61 | gsumress | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 63 | 10 23 | ressbas2 | ⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑊 ) ) |
| 64 | 28 63 | ax-mp | ⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑊 ) |
| 65 | 10 | xrs10 | ⊢ 0 = ( 0g ‘ 𝑊 ) |
| 66 | 10 | xrs1cmn | ⊢ 𝑊 ∈ CMnd |
| 67 | 66 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑊 ∈ CMnd ) |
| 68 | c0ex | ⊢ 0 ∈ V | |
| 69 | 68 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 0 ∈ V ) |
| 70 | 51 27 69 | fdmfifsupp | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) finSupp 0 ) |
| 71 | 64 65 67 27 51 70 | gsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 72 | 62 71 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 73 | 72 | eldifad | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ∈ ℝ* ) |
| 74 | 73 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) : 𝑆 ⟶ ℝ* ) |
| 75 | 74 | frnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
| 76 | 75 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
| 77 | iunss | ⊢ ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ↔ ∀ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) | |
| 78 | 76 77 | sylibr | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ⊆ ℝ* ) |
| 79 | 12 78 | eqsstrid | ⊢ ( 𝜑 → 𝑇 ⊆ ℝ* ) |
| 80 | infxrcl | ⊢ ( 𝑇 ⊆ ℝ* → inf ( 𝑇 , ℝ* , < ) ∈ ℝ* ) | |
| 81 | 79 80 | syl | ⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) ∈ ℝ* ) |
| 82 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) | |
| 83 | 7 8 9 82 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) |
| 84 | 1nn | ⊢ 1 ∈ ℕ | |
| 85 | 1ex | ⊢ 1 ∈ V | |
| 86 | opex | ⊢ 〈 𝑋 , 𝑌 〉 ∈ V | |
| 87 | 85 86 | f1osn | ⊢ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } –1-1-onto→ { 〈 𝑋 , 𝑌 〉 } |
| 88 | f1of | ⊢ ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } –1-1-onto→ { 〈 𝑋 , 𝑌 〉 } → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } ) | |
| 89 | 87 88 | ax-mp | ⊢ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } |
| 90 | 8 9 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝑉 × 𝑉 ) ) |
| 91 | 90 | snssd | ⊢ ( 𝜑 → { 〈 𝑋 , 𝑌 〉 } ⊆ ( 𝑉 × 𝑉 ) ) |
| 92 | fss | ⊢ ( ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 , 𝑌 〉 } ∧ { 〈 𝑋 , 𝑌 〉 } ⊆ ( 𝑉 × 𝑉 ) ) → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) | |
| 93 | 89 91 92 | sylancr | ⊢ ( 𝜑 → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) |
| 94 | 7 | elfvexd | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 95 | 94 94 | xpexd | ⊢ ( 𝜑 → ( 𝑉 × 𝑉 ) ∈ V ) |
| 96 | snex | ⊢ { 1 } ∈ V | |
| 97 | elmapg | ⊢ ( ( ( 𝑉 × 𝑉 ) ∈ V ∧ { 1 } ∈ V ) → ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ↔ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) ) | |
| 98 | 95 96 97 | sylancl | ⊢ ( 𝜑 → ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ↔ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉 × 𝑉 ) ) ) |
| 99 | 93 98 | mpbird | ⊢ ( 𝜑 → { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ) |
| 100 | op1stg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) | |
| 101 | 8 9 100 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
| 102 | 101 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 103 | op2ndg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) | |
| 104 | 8 9 103 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 105 | 104 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 106 | 102 105 | jca | ⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 107 | 25 | a1i | ⊢ ( 𝜑 → ℝ*𝑠 ∈ V ) |
| 108 | snfi | ⊢ { 1 } ∈ Fin | |
| 109 | 108 | a1i | ⊢ ( 𝜑 → { 1 } ∈ Fin ) |
| 110 | 28 | a1i | ⊢ ( 𝜑 → ( ℝ* ∖ { -∞ } ) ⊆ ℝ* ) |
| 111 | xmetge0 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 0 ≤ ( 𝑋 𝐸 𝑌 ) ) | |
| 112 | 7 8 9 111 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑋 𝐸 𝑌 ) ) |
| 113 | ge0nemnf | ⊢ ( ( ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ∧ 0 ≤ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) | |
| 114 | 83 112 113 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) |
| 115 | eldifsn | ⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ↔ ( ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ≠ -∞ ) ) | |
| 116 | 83 114 115 | sylanbrc | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 117 | fconst6g | ⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) → ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) | |
| 118 | 116 117 | syl | ⊢ ( 𝜑 → ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 119 | fcoconst | ⊢ ( ( 𝐸 Fn ( 𝑉 × 𝑉 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) ) | |
| 120 | 32 90 119 | syl2anc | ⊢ ( 𝜑 → ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) ) |
| 121 | 85 86 | xpsn | ⊢ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } |
| 122 | 121 | coeq2i | ⊢ ( 𝐸 ∘ ( { 1 } × { 〈 𝑋 , 𝑌 〉 } ) ) = ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) |
| 123 | df-ov | ⊢ ( 𝑋 𝐸 𝑌 ) = ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 124 | 123 | eqcomi | ⊢ ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝑋 𝐸 𝑌 ) |
| 125 | 124 | sneqi | ⊢ { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } = { ( 𝑋 𝐸 𝑌 ) } |
| 126 | 125 | xpeq2i | ⊢ ( { 1 } × { ( 𝐸 ‘ 〈 𝑋 , 𝑌 〉 ) } ) = ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) |
| 127 | 120 122 126 | 3eqtr3g | ⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) = ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) ) |
| 128 | 127 | feq1d | ⊢ ( 𝜑 → ( ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ↔ ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) ) |
| 129 | 118 128 | mpbird | ⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) : { 1 } ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 130 | 52 56 | mp1i | ⊢ ( 𝜑 → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 131 | 60 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ( 0 +𝑒 𝑥 ) = 𝑥 ∧ ( 𝑥 +𝑒 0 ) = 𝑥 ) ) |
| 132 | 23 24 10 107 109 110 129 130 131 | gsumress | ⊢ ( 𝜑 → ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) = ( 𝑊 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
| 133 | fconstmpt | ⊢ ( { 1 } × { ( 𝑋 𝐸 𝑌 ) } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) | |
| 134 | 127 133 | eqtrdi | ⊢ ( 𝜑 → ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) |
| 135 | 134 | oveq2d | ⊢ ( 𝜑 → ( 𝑊 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) = ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) ) |
| 136 | cmnmnd | ⊢ ( 𝑊 ∈ CMnd → 𝑊 ∈ Mnd ) | |
| 137 | 66 136 | mp1i | ⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
| 138 | 84 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 139 | eqidd | ⊢ ( 𝑗 = 1 → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 𝐸 𝑌 ) ) | |
| 140 | 64 139 | gsumsn | ⊢ ( ( 𝑊 ∈ Mnd ∧ 1 ∈ ℕ ∧ ( 𝑋 𝐸 𝑌 ) ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
| 141 | 137 138 116 140 | syl3anc | ⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝑋 𝐸 𝑌 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
| 142 | 132 135 141 | 3eqtrrd | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
| 143 | fveq1 | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝑔 ‘ 1 ) = ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ‘ 1 ) ) | |
| 144 | 85 86 | fvsn | ⊢ ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ‘ 1 ) = 〈 𝑋 , 𝑌 〉 |
| 145 | 143 144 | eqtrdi | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝑔 ‘ 1 ) = 〈 𝑋 , 𝑌 〉 ) |
| 146 | 145 | fveq2d | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 1st ‘ ( 𝑔 ‘ 1 ) ) = ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 147 | 146 | fveqeq2d | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 148 | 145 | fveq2d | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 149 | 148 | fveqeq2d | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 150 | 147 149 | anbi12d | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 151 | coeq2 | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( 𝐸 ∘ 𝑔 ) = ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) | |
| 152 | 151 | oveq2d | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) |
| 153 | 152 | eqeq2d | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) |
| 154 | 150 153 | anbi12d | ⊢ ( 𝑔 = { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) ) |
| 155 | 154 | rspcev | ⊢ ( ( { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ∧ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ { 〈 1 , 〈 𝑋 , 𝑌 〉 〉 } ) ) ) ) → ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 156 | 99 106 142 155 | syl12anc | ⊢ ( 𝜑 → ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 157 | ovex | ⊢ ( 𝑋 𝐸 𝑌 ) ∈ V | |
| 158 | eqid | ⊢ ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) = ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) | |
| 159 | 158 | elrnmpt | ⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ V → ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 160 | 157 159 | ax-mp | ⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 161 | 11 | rexeqi | ⊢ ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 162 | fveq1 | ⊢ ( ℎ = 𝑔 → ( ℎ ‘ 1 ) = ( 𝑔 ‘ 1 ) ) | |
| 163 | 162 | fveq2d | ⊢ ( ℎ = 𝑔 → ( 1st ‘ ( ℎ ‘ 1 ) ) = ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) |
| 164 | 163 | fveqeq2d | ⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 165 | fveq1 | ⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑛 ) = ( 𝑔 ‘ 𝑛 ) ) | |
| 166 | 165 | fveq2d | ⊢ ( ℎ = 𝑔 → ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 167 | 166 | fveqeq2d | ⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 168 | fveq1 | ⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) | |
| 169 | 168 | fveq2d | ⊢ ( ℎ = 𝑔 → ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 170 | 169 | fveq2d | ⊢ ( ℎ = 𝑔 → ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 171 | fveq1 | ⊢ ( ℎ = 𝑔 → ( ℎ ‘ ( 𝑖 + 1 ) ) = ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) | |
| 172 | 171 | fveq2d | ⊢ ( ℎ = 𝑔 → ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) |
| 173 | 172 | fveq2d | ⊢ ( ℎ = 𝑔 → ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 174 | 170 173 | eqeq12d | ⊢ ( ℎ = 𝑔 → ( ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 175 | 174 | ralbidv | ⊢ ( ℎ = 𝑔 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 176 | 164 167 175 | 3anbi123d | ⊢ ( ℎ = 𝑔 → ( ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 177 | 176 | rexrab | ⊢ ( ∃ 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 178 | 161 177 | bitri | ⊢ ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 179 | oveq2 | ⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) | |
| 180 | 1z | ⊢ 1 ∈ ℤ | |
| 181 | fzsn | ⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) | |
| 182 | 180 181 | ax-mp | ⊢ ( 1 ... 1 ) = { 1 } |
| 183 | 179 182 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = { 1 } ) |
| 184 | 183 | oveq2d | ⊢ ( 𝑛 = 1 → ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) = ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ) |
| 185 | df-3an | ⊢ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) | |
| 186 | ral0 | ⊢ ∀ 𝑖 ∈ ∅ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) | |
| 187 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) ) | |
| 188 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 189 | 187 188 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = 0 ) |
| 190 | 189 | oveq2d | ⊢ ( 𝑛 = 1 → ( 1 ... ( 𝑛 − 1 ) ) = ( 1 ... 0 ) ) |
| 191 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 192 | 190 191 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 1 ... ( 𝑛 − 1 ) ) = ∅ ) |
| 193 | 192 | raleqdv | ⊢ ( 𝑛 = 1 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ∅ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 194 | 186 193 | mpbiri | ⊢ ( 𝑛 = 1 → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 195 | 194 | biantrud | ⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 196 | 2fveq3 | ⊢ ( 𝑛 = 1 → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) | |
| 197 | 196 | fveqeq2d | ⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 198 | 197 | anbi2d | ⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 199 | 195 198 | bitr3d | ⊢ ( 𝑛 = 1 → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 200 | 185 199 | bitrid | ⊢ ( 𝑛 = 1 → ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 201 | 200 | anbi1d | ⊢ ( 𝑛 = 1 → ( ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
| 202 | 184 201 | rexeqbidv | ⊢ ( 𝑛 = 1 → ( ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
| 203 | 178 202 | bitrid | ⊢ ( 𝑛 = 1 → ( ∃ 𝑔 ∈ 𝑆 ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
| 204 | 160 203 | bitrid | ⊢ ( 𝑛 = 1 → ( ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) ) |
| 205 | 204 | rspcev | ⊢ ( ( 1 ∈ ℕ ∧ ∃ 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m { 1 } ) ( ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑋 𝐸 𝑌 ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 206 | 84 156 205 | sylancr | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 207 | eliun | ⊢ ( ( 𝑋 𝐸 𝑌 ) ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( 𝑋 𝐸 𝑌 ) ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) | |
| 208 | 206 207 | sylibr | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 209 | 208 12 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ∈ 𝑇 ) |
| 210 | infxrlb | ⊢ ( ( 𝑇 ⊆ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ∈ 𝑇 ) → inf ( 𝑇 , ℝ* , < ) ≤ ( 𝑋 𝐸 𝑌 ) ) | |
| 211 | 79 209 210 | syl2anc | ⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) ≤ ( 𝑋 𝐸 𝑌 ) ) |
| 212 | 12 | eleq2i | ⊢ ( 𝑝 ∈ 𝑇 ↔ 𝑝 ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 213 | eliun | ⊢ ( 𝑝 ∈ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) | |
| 214 | 212 213 | bitri | ⊢ ( 𝑝 ∈ 𝑇 ↔ ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 215 | 158 | elrnmpt | ⊢ ( 𝑝 ∈ V → ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 216 | 215 | elv | ⊢ ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 217 | 176 11 | elrab2 | ⊢ ( 𝑔 ∈ 𝑆 ↔ ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∧ ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 218 | 217 | simprbi | ⊢ ( 𝑔 ∈ 𝑆 → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 219 | 218 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 220 | 219 | simp2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 221 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 222 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –1-1→ 𝐵 ) | |
| 223 | 221 222 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 224 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ℕ ) | |
| 225 | elfz1end | ⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) | |
| 226 | 224 225 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ( 1 ... 𝑛 ) ) |
| 227 | 49 226 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 228 | xp2nd | ⊢ ( ( 𝑔 ‘ 𝑛 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ) | |
| 229 | 227 228 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ) |
| 230 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑌 ∈ 𝑉 ) |
| 231 | f1fveq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) ) | |
| 232 | 223 229 230 231 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) ) |
| 233 | 220 232 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = 𝑌 ) |
| 234 | 233 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) = ( 𝑋 𝐸 𝑌 ) ) |
| 235 | eleq1 | ⊢ ( 𝑚 = 1 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 1 ∈ ( 1 ... 𝑛 ) ) ) | |
| 236 | 2fveq3 | ⊢ ( 𝑚 = 1 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) | |
| 237 | 236 | oveq2d | ⊢ ( 𝑚 = 1 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
| 238 | oveq2 | ⊢ ( 𝑚 = 1 → ( 1 ... 𝑚 ) = ( 1 ... 1 ) ) | |
| 239 | 238 182 | eqtrdi | ⊢ ( 𝑚 = 1 → ( 1 ... 𝑚 ) = { 1 } ) |
| 240 | 239 | reseq2d | ⊢ ( 𝑚 = 1 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) |
| 241 | 240 | oveq2d | ⊢ ( 𝑚 = 1 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) |
| 242 | 237 241 | breq12d | ⊢ ( 𝑚 = 1 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) |
| 243 | 235 242 | imbi12d | ⊢ ( 𝑚 = 1 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) ) |
| 244 | 243 | imbi2d | ⊢ ( 𝑚 = 1 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) ) ) |
| 245 | eleq1 | ⊢ ( 𝑚 = 𝑥 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑥 ∈ ( 1 ... 𝑛 ) ) ) | |
| 246 | 2fveq3 | ⊢ ( 𝑚 = 𝑥 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 247 | 246 | oveq2d | ⊢ ( 𝑚 = 𝑥 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 248 | oveq2 | ⊢ ( 𝑚 = 𝑥 → ( 1 ... 𝑚 ) = ( 1 ... 𝑥 ) ) | |
| 249 | 248 | reseq2d | ⊢ ( 𝑚 = 𝑥 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) |
| 250 | 249 | oveq2d | ⊢ ( 𝑚 = 𝑥 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) |
| 251 | 247 250 | breq12d | ⊢ ( 𝑚 = 𝑥 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) |
| 252 | 245 251 | imbi12d | ⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) |
| 253 | 252 | imbi2d | ⊢ ( 𝑚 = 𝑥 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) ) |
| 254 | eleq1 | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) | |
| 255 | 2fveq3 | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) | |
| 256 | 255 | oveq2d | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 257 | oveq2 | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 1 ... 𝑚 ) = ( 1 ... ( 𝑥 + 1 ) ) ) | |
| 258 | 257 | reseq2d | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) |
| 259 | 258 | oveq2d | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) |
| 260 | 256 259 | breq12d | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) |
| 261 | 254 260 | imbi12d | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) |
| 262 | 261 | imbi2d | ⊢ ( 𝑚 = ( 𝑥 + 1 ) → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) ) |
| 263 | eleq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) ) | |
| 264 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 265 | 264 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 266 | oveq2 | ⊢ ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) ) | |
| 267 | 266 | reseq2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) = ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) |
| 268 | 267 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
| 269 | 265 268 | breq12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) |
| 270 | 263 269 | imbi12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) |
| 271 | 270 | imbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑚 ) ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) ) |
| 272 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 273 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑋 ∈ 𝑉 ) |
| 274 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 275 | 224 274 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 276 | eluzfz1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑛 ) ) | |
| 277 | 275 276 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 1 ∈ ( 1 ... 𝑛 ) ) |
| 278 | 49 277 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 279 | xp2nd | ⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) | |
| 280 | 278 279 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
| 281 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ∈ ℝ* ) | |
| 282 | 272 273 280 281 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ∈ ℝ* ) |
| 283 | 282 | xrleidd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
| 284 | 137 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑊 ∈ Mnd ) |
| 285 | 84 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 1 ∈ ℕ ) |
| 286 | 44 278 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 287 | 2fveq3 | ⊢ ( 𝑗 = 1 → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) | |
| 288 | 64 287 | gsumsn | ⊢ ( ( 𝑊 ∈ Mnd ∧ 1 ∈ ℕ ∧ ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 289 | 284 285 286 288 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 290 | 272 30 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) |
| 291 | fcompt | ⊢ ( ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ∧ 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | |
| 292 | 290 49 291 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 293 | 292 | reseq1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ { 1 } ) ) |
| 294 | 277 | snssd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → { 1 } ⊆ ( 1 ... 𝑛 ) ) |
| 295 | 294 | resmptd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ { 1 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 296 | 293 295 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) = ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 297 | 296 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) = ( 𝑊 Σg ( 𝑗 ∈ { 1 } ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
| 298 | df-ov | ⊢ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐸 ‘ 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) | |
| 299 | 1st2nd2 | ⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 𝑔 ‘ 1 ) = 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) | |
| 300 | 278 299 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑔 ‘ 1 ) = 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
| 301 | 219 | simp1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 302 | xp1st | ⊢ ( ( 𝑔 ‘ 1 ) ∈ ( 𝑉 × 𝑉 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) | |
| 303 | 278 302 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ) |
| 304 | f1fveq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 1st ‘ ( 𝑔 ‘ 1 ) ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) ) | |
| 305 | 223 303 273 304 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) ) |
| 306 | 301 305 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1st ‘ ( 𝑔 ‘ 1 ) ) = 𝑋 ) |
| 307 | 306 | opeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 〈 ( 1st ‘ ( 𝑔 ‘ 1 ) ) , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 = 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) |
| 308 | 300 307 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 = ( 𝑔 ‘ 1 ) ) |
| 309 | 308 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝐸 ‘ 〈 𝑋 , ( 2nd ‘ ( 𝑔 ‘ 1 ) ) 〉 ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 310 | 298 309 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) = ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) |
| 311 | 289 297 310 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) = ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ) |
| 312 | 283 311 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) |
| 313 | 312 | a1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 1 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 1 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ { 1 } ) ) ) ) |
| 314 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ℕ ) | |
| 315 | 314 274 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
| 316 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) | |
| 317 | peano2fzr | ⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) | |
| 318 | 315 316 317 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) |
| 319 | 318 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → 𝑥 ∈ ( 1 ... 𝑛 ) ) ) |
| 320 | 319 | imim1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) ) |
| 321 | 272 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 322 | 273 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 323 | 49 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
| 324 | 323 318 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 325 | xp2nd | ⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) | |
| 326 | 324 325 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) |
| 327 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ) | |
| 328 | 321 322 326 327 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ) |
| 329 | 66 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑊 ∈ CMnd ) |
| 330 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... 𝑥 ) ∈ Fin ) | |
| 331 | 51 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 332 | fzsuc | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑥 + 1 ) ) = ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) | |
| 333 | 315 332 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... ( 𝑥 + 1 ) ) = ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) |
| 334 | elfzuz3 | ⊢ ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) | |
| 335 | 334 | ad2antll | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) |
| 336 | fzss2 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) → ( 1 ... ( 𝑥 + 1 ) ) ⊆ ( 1 ... 𝑛 ) ) | |
| 337 | 335 336 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... ( 𝑥 + 1 ) ) ⊆ ( 1 ... 𝑛 ) ) |
| 338 | 333 337 | eqsstrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ⊆ ( 1 ... 𝑛 ) ) |
| 339 | 338 | unssad | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1 ... 𝑥 ) ⊆ ( 1 ... 𝑛 ) ) |
| 340 | 331 339 | fssresd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) : ( 1 ... 𝑥 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 341 | 68 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 0 ∈ V ) |
| 342 | 340 330 341 | fdmfifsupp | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) finSupp 0 ) |
| 343 | 64 65 329 330 340 342 | gsumcl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 344 | 343 | eldifad | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ) |
| 345 | 321 30 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ℝ* ) |
| 346 | 323 316 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) ) |
| 347 | 345 346 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) |
| 348 | xleadd1a | ⊢ ( ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) ∧ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) | |
| 349 | 348 | ex | ⊢ ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ∈ ℝ* ∧ ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ℝ* ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 350 | 328 344 347 349 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 351 | xp2nd | ⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) | |
| 352 | 346 351 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
| 353 | xmettri | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) | |
| 354 | 321 322 352 326 353 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 355 | 1st2nd2 | ⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) | |
| 356 | 346 355 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 357 | 2fveq3 | ⊢ ( 𝑖 = 𝑥 → ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 358 | 357 | fveq2d | ⊢ ( 𝑖 = 𝑥 → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 359 | fvoveq1 | ⊢ ( 𝑖 = 𝑥 → ( 𝑔 ‘ ( 𝑖 + 1 ) ) = ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) | |
| 360 | 359 | fveq2d | ⊢ ( 𝑖 = 𝑥 → ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
| 361 | 360 | fveq2d | ⊢ ( 𝑖 = 𝑥 → ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 362 | 358 361 | eqeq12d | ⊢ ( 𝑖 = 𝑥 → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 363 | 219 | simp3d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 364 | 363 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 365 | nnz | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) | |
| 366 | 365 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ℤ ) |
| 367 | eluzp1m1 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑥 + 1 ) ) ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) | |
| 368 | 366 335 367 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) |
| 369 | elfzuzb | ⊢ ( 𝑥 ∈ ( 1 ... ( 𝑛 − 1 ) ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) ) | |
| 370 | 315 368 369 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝑥 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) |
| 371 | 362 364 370 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 372 | 223 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 373 | xp1st | ⊢ ( ( 𝑔 ‘ ( 𝑥 + 1 ) ) ∈ ( 𝑉 × 𝑉 ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) | |
| 374 | 346 373 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) |
| 375 | f1fveq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ 𝑉 ∧ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) | |
| 376 | 372 326 374 375 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐹 ‘ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ↔ ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 377 | 371 376 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) = ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) |
| 378 | 377 | opeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 379 | 356 378 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑔 ‘ ( 𝑥 + 1 ) ) = 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
| 380 | 379 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) = ( 𝐸 ‘ 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) ) |
| 381 | df-ov | ⊢ ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( 𝐸 ‘ 〈 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) 〉 ) | |
| 382 | 380 381 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 383 | 382 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 384 | 354 383 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 385 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ 𝑉 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) | |
| 386 | 321 322 352 385 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
| 387 | 328 347 | xaddcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
| 388 | 344 347 | xaddcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) |
| 389 | xrletr | ⊢ ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ∧ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∈ ℝ* ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) | |
| 390 | 386 387 388 389 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ∧ ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 391 | 384 390 | mpand | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 392 | 350 391 | syld | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 393 | xrex | ⊢ ℝ* ∈ V | |
| 394 | 393 | difexi | ⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 395 | 10 24 | ressplusg | ⊢ ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g ‘ 𝑊 ) ) |
| 396 | 394 395 | ax-mp | ⊢ +𝑒 = ( +g ‘ 𝑊 ) |
| 397 | 44 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 398 | fzelp1 | ⊢ ( 𝑗 ∈ ( 1 ... 𝑥 ) → 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) | |
| 399 | 49 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) |
| 400 | 337 | sselda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → 𝑗 ∈ ( 1 ... 𝑛 ) ) |
| 401 | 399 400 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑥 + 1 ) ) ) → ( 𝑔 ‘ 𝑗 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 402 | 398 401 | sylan2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → ( 𝑔 ‘ 𝑗 ) ∈ ( 𝑉 × 𝑉 ) ) |
| 403 | 397 402 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑥 ) ) → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 404 | fzp1disj | ⊢ ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ | |
| 405 | 404 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ ) |
| 406 | disjsn | ⊢ ( ( ( 1 ... 𝑥 ) ∩ { ( 𝑥 + 1 ) } ) = ∅ ↔ ¬ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑥 ) ) | |
| 407 | 405 406 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ¬ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑥 ) ) |
| 408 | 44 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( ℝ* ∖ { -∞ } ) ) |
| 409 | 408 346 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ∈ ( ℝ* ∖ { -∞ } ) ) |
| 410 | 2fveq3 | ⊢ ( 𝑗 = ( 𝑥 + 1 ) → ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) | |
| 411 | 64 396 329 330 403 316 407 409 410 | gsumunsn | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) = ( ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 412 | 292 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝐸 ∘ 𝑔 ) = ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 413 | 412 333 | reseq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) ) |
| 414 | 338 | resmptd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ) = ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 415 | 413 414 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) = ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 416 | 415 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) = ( 𝑊 Σg ( 𝑗 ∈ ( ( 1 ... 𝑥 ) ∪ { ( 𝑥 + 1 ) } ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
| 417 | 412 | reseq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) = ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( 1 ... 𝑥 ) ) ) |
| 418 | 339 | resmptd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑗 ∈ ( 1 ... 𝑛 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ↾ ( 1 ... 𝑥 ) ) = ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 419 | 417 418 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) = ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 420 | 419 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) = ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
| 421 | 420 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) = ( ( 𝑊 Σg ( 𝑗 ∈ ( 1 ... 𝑥 ) ↦ ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 422 | 411 416 421 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) = ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 423 | 422 | breq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ↔ ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) +𝑒 ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ) ) |
| 424 | 392 423 | sylibrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ℕ ∧ ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) → ( ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) |
| 425 | 320 424 | animpimp2impd | ⊢ ( 𝑥 ∈ ℕ → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑥 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑥 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑥 ) ) ) ) ) → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝑥 + 1 ) ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ ( 𝑥 + 1 ) ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... ( 𝑥 + 1 ) ) ) ) ) ) ) ) |
| 426 | 244 253 262 271 313 425 | nnind | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) ) |
| 427 | 224 426 | mpcom | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) ) |
| 428 | 226 427 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
| 429 | 234 428 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 𝑌 ) ≤ ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
| 430 | ffn | ⊢ ( ( 𝐸 ∘ 𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ* ∖ { -∞ } ) → ( 𝐸 ∘ 𝑔 ) Fn ( 1 ... 𝑛 ) ) | |
| 431 | fnresdm | ⊢ ( ( 𝐸 ∘ 𝑔 ) Fn ( 1 ... 𝑛 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐸 ∘ 𝑔 ) ) | |
| 432 | 51 430 431 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐸 ∘ 𝑔 ) ) |
| 433 | 432 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) = ( 𝑊 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 434 | 62 433 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) = ( 𝑊 Σg ( ( 𝐸 ∘ 𝑔 ) ↾ ( 1 ... 𝑛 ) ) ) ) |
| 435 | 429 434 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑋 𝐸 𝑌 ) ≤ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 436 | breq2 | ⊢ ( 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ↔ ( 𝑋 𝐸 𝑌 ) ≤ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) | |
| 437 | 435 436 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 438 | 437 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑔 ∈ 𝑆 𝑝 = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 439 | 216 438 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 440 | 439 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ 𝑝 ∈ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 441 | 214 440 | biimtrid | ⊢ ( 𝜑 → ( 𝑝 ∈ 𝑇 → ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 442 | 441 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) |
| 443 | infxrgelb | ⊢ ( ( 𝑇 ⊆ ℝ* ∧ ( 𝑋 𝐸 𝑌 ) ∈ ℝ* ) → ( ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ↔ ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) | |
| 444 | 79 83 443 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ↔ ∀ 𝑝 ∈ 𝑇 ( 𝑋 𝐸 𝑌 ) ≤ 𝑝 ) ) |
| 445 | 442 444 | mpbird | ⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ≤ inf ( 𝑇 , ℝ* , < ) ) |
| 446 | 81 83 211 445 | xrletrid | ⊢ ( 𝜑 → inf ( 𝑇 , ℝ* , < ) = ( 𝑋 𝐸 𝑌 ) ) |
| 447 | 22 446 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) ) |