This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is finite. (Contributed by NM, 4-Nov-2002) (Proof shortened by BTernaryTau, 13-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snfi | ⊢ { 𝐴 } ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn | ⊢ 1o ∈ ω | |
| 2 | ensn1g | ⊢ ( 𝐴 ∈ V → { 𝐴 } ≈ 1o ) | |
| 3 | breq2 | ⊢ ( 𝑥 = 1o → ( { 𝐴 } ≈ 𝑥 ↔ { 𝐴 } ≈ 1o ) ) | |
| 4 | 3 | rspcev | ⊢ ( ( 1o ∈ ω ∧ { 𝐴 } ≈ 1o ) → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
| 5 | 1 2 4 | sylancr | ⊢ ( 𝐴 ∈ V → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
| 6 | isfi | ⊢ ( { 𝐴 } ∈ Fin ↔ ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝐴 ∈ V → { 𝐴 } ∈ Fin ) |
| 8 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 9 | 0fi | ⊢ ∅ ∈ Fin | |
| 10 | eleq1 | ⊢ ( { 𝐴 } = ∅ → ( { 𝐴 } ∈ Fin ↔ ∅ ∈ Fin ) ) | |
| 11 | 9 10 | mpbiri | ⊢ ( { 𝐴 } = ∅ → { 𝐴 } ∈ Fin ) |
| 12 | 8 11 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ Fin ) |
| 13 | 7 12 | pm2.61i | ⊢ { 𝐴 } ∈ Fin |