This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffnov | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ↔ ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ↔ ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 3 | df-ov | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 4 | 2 3 | eqtr4di | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝑥 𝐹 𝑦 ) ) |
| 5 | 4 | eleq1d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ↔ ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) ) |
| 6 | 5 | ralxp | ⊢ ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) |
| 7 | 6 | anbi2i | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) ↔ ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) ) |
| 8 | 1 7 | bitri | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ↔ ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) ) |