This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number 0 is real. Remark: the first step could also be ax-icn . See also 0reALT . (Contributed by Eric Schmidt, 21-May-2007) (Revised by Scott Fenton, 3-Jan-2013) Reduce dependencies on axioms. (Revised by Steven Nguyen, 11-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | cnre | ⊢ ( 1 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 1 = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 3 | ax-rnegex | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℝ ( 𝑥 + 𝑧 ) = 0 ) | |
| 4 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑥 + 𝑧 ) ∈ ℝ ) | |
| 5 | eleq1 | ⊢ ( ( 𝑥 + 𝑧 ) = 0 → ( ( 𝑥 + 𝑧 ) ∈ ℝ ↔ 0 ∈ ℝ ) ) | |
| 6 | 4 5 | syl5ibcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 + 𝑧 ) = 0 → 0 ∈ ℝ ) ) |
| 7 | 6 | rexlimdva | ⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ∈ ℝ ( 𝑥 + 𝑧 ) = 0 → 0 ∈ ℝ ) ) |
| 8 | 3 7 | mpd | ⊢ ( 𝑥 ∈ ℝ → 0 ∈ ℝ ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∃ 𝑦 ∈ ℝ 1 = ( 𝑥 + ( i · 𝑦 ) ) ) → 0 ∈ ℝ ) |
| 10 | 9 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 1 = ( 𝑥 + ( i · 𝑦 ) ) → 0 ∈ ℝ ) |
| 11 | 1 2 10 | mp2b | ⊢ 0 ∈ ℝ |