This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007) Remove usage of ax-10 , ax-11 , and ax-12 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| raleqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rexeqbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | raleqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 4 | 3 2 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 5 | 4 | rexbidv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |