This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ( M ... ( N + 1 ) ) is the disjoint union of ( M ... N ) with { ( N + 1 ) } . (Contributed by Mario Carneiro, 7-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzp1disj | ⊢ ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝑁 + 1 ) ≤ 𝑁 ) | |
| 2 | elfzel2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | 2 | zred | ⊢ ( ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ℝ ) |
| 4 | ltp1 | ⊢ ( 𝑁 ∈ ℝ → 𝑁 < ( 𝑁 + 1 ) ) | |
| 5 | peano2re | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) | |
| 6 | ltnle | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℝ ) → ( 𝑁 < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) ) | |
| 7 | 5 6 | mpdan | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 8 | 4 7 | mpbid | ⊢ ( 𝑁 ∈ ℝ → ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) |
| 9 | 3 8 | syl | ⊢ ( ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) |
| 10 | 1 9 | pm2.65i | ⊢ ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) |
| 11 | disjsn | ⊢ ( ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ↔ ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 12 | 10 11 | mpbir | ⊢ ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ |