This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzp1m1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 2 | 1 | ad2antrl | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 3 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 4 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 5 | 1re | ⊢ 1 ∈ ℝ | |
| 6 | leaddsub | ⊢ ( ( 𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) | |
| 7 | 5 6 | mp3an2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 8 | 3 4 7 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) → 𝑀 ≤ ( 𝑁 − 1 ) ) |
| 10 | 9 | anasss | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) → 𝑀 ≤ ( 𝑁 − 1 ) ) |
| 11 | 2 10 | jca | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) → ( ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 12 | 11 | ex | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) → ( ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 − 1 ) ) ) ) |
| 13 | peano2z | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ ) | |
| 14 | eluz1 | ⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑁 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑁 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) ) |
| 16 | eluz1 | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 − 1 ) ) ) ) | |
| 17 | 12 15 16 | 3imtr4d | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |