This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011) (Proof shortened by AV, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fco | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → Fun 𝐺 ) | |
| 2 | fcof | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ Fun 𝐺 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) ⟶ 𝐶 ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) ⟶ 𝐶 ) |
| 4 | fimacnv | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐺 “ 𝐵 ) = 𝐴 ) | |
| 5 | 4 | eqcomd | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → 𝐴 = ( ◡ 𝐺 “ 𝐵 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → 𝐴 = ( ◡ 𝐺 “ 𝐵 ) ) |
| 7 | 6 | feq2d | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐵 ) ⟶ 𝐶 ) ) |
| 8 | 3 7 | mpbird | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |