This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl for an example of its use. See nn0ind for induction on nonnegative integers and uzind , uzind4 for induction on an arbitrary upper set of integers. See indstr for strong induction. See also nnindALT . This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997) (Revised by Mario Carneiro, 16-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnind.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) | |
| nnind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| nnind.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| nnind.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
| nnind.5 | ⊢ 𝜓 | ||
| nnind.6 | ⊢ ( 𝑦 ∈ ℕ → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | nnind | ⊢ ( 𝐴 ∈ ℕ → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnind.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | nnind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | nnind.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | nnind.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | nnind.5 | ⊢ 𝜓 | |
| 6 | nnind.6 | ⊢ ( 𝑦 ∈ ℕ → ( 𝜒 → 𝜃 ) ) | |
| 7 | 1nn | ⊢ 1 ∈ ℕ | |
| 8 | 1 | elrab | ⊢ ( 1 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 1 ∈ ℕ ∧ 𝜓 ) ) |
| 9 | 7 5 8 | mpbir2an | ⊢ 1 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } |
| 10 | elrabi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑦 ∈ ℕ ) | |
| 11 | peano2nn | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) | |
| 12 | 11 | a1d | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) ) |
| 13 | 12 6 | anim12d | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 ∈ ℕ ∧ 𝜒 ) → ( ( 𝑦 + 1 ) ∈ ℕ ∧ 𝜃 ) ) ) |
| 14 | 2 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 𝑦 ∈ ℕ ∧ 𝜒 ) ) |
| 15 | 3 | elrab | ⊢ ( ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( ( 𝑦 + 1 ) ∈ ℕ ∧ 𝜃 ) ) |
| 16 | 13 14 15 | 3imtr4g | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ) ) |
| 17 | 10 16 | mpcom | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ) |
| 18 | 17 | rgen | ⊢ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } |
| 19 | peano5nni | ⊢ ( ( 1 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ( 𝑦 + 1 ) ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ) → ℕ ⊆ { 𝑥 ∈ ℕ ∣ 𝜑 } ) | |
| 20 | 9 18 19 | mp2an | ⊢ ℕ ⊆ { 𝑥 ∈ ℕ ∣ 𝜑 } |
| 21 | 20 | sseli | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ) |
| 22 | 4 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 𝐴 ∈ ℕ ∧ 𝜏 ) ) |
| 23 | 21 22 | sylib | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℕ ∧ 𝜏 ) ) |
| 24 | 23 | simprd | ⊢ ( 𝐴 ∈ ℕ → 𝜏 ) |