This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for imasdsf1o . (Contributed by Mario Carneiro, 21-Aug-2015) (Proof shortened by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasdsf1o.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasdsf1o.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasdsf1o.f | |- ( ph -> F : V -1-1-onto-> B ) |
||
| imasdsf1o.r | |- ( ph -> R e. Z ) |
||
| imasdsf1o.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) |
||
| imasdsf1o.d | |- D = ( dist ` U ) |
||
| imasdsf1o.m | |- ( ph -> E e. ( *Met ` V ) ) |
||
| imasdsf1o.x | |- ( ph -> X e. V ) |
||
| imasdsf1o.y | |- ( ph -> Y e. V ) |
||
| imasdsf1o.w | |- W = ( RR*s |`s ( RR* \ { -oo } ) ) |
||
| imasdsf1o.s | |- S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
||
| imasdsf1o.t | |- T = U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) |
||
| Assertion | imasdsf1olem | |- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = ( X E Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasdsf1o.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasdsf1o.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasdsf1o.f | |- ( ph -> F : V -1-1-onto-> B ) |
|
| 4 | imasdsf1o.r | |- ( ph -> R e. Z ) |
|
| 5 | imasdsf1o.e | |- E = ( ( dist ` R ) |` ( V X. V ) ) |
|
| 6 | imasdsf1o.d | |- D = ( dist ` U ) |
|
| 7 | imasdsf1o.m | |- ( ph -> E e. ( *Met ` V ) ) |
|
| 8 | imasdsf1o.x | |- ( ph -> X e. V ) |
|
| 9 | imasdsf1o.y | |- ( ph -> Y e. V ) |
|
| 10 | imasdsf1o.w | |- W = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| 11 | imasdsf1o.s | |- S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
|
| 12 | imasdsf1o.t | |- T = U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) |
|
| 13 | f1ofo | |- ( F : V -1-1-onto-> B -> F : V -onto-> B ) |
|
| 14 | 3 13 | syl | |- ( ph -> F : V -onto-> B ) |
| 15 | eqid | |- ( dist ` R ) = ( dist ` R ) |
|
| 16 | f1of | |- ( F : V -1-1-onto-> B -> F : V --> B ) |
|
| 17 | 3 16 | syl | |- ( ph -> F : V --> B ) |
| 18 | 17 8 | ffvelcdmd | |- ( ph -> ( F ` X ) e. B ) |
| 19 | 17 9 | ffvelcdmd | |- ( ph -> ( F ` Y ) e. B ) |
| 20 | 1 2 14 4 15 6 18 19 11 5 | imasdsval2 | |- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) |
| 21 | 12 | infeq1i | |- inf ( T , RR* , < ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) |
| 22 | 20 21 | eqtr4di | |- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = inf ( T , RR* , < ) ) |
| 23 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 24 | xrsadd | |- +e = ( +g ` RR*s ) |
|
| 25 | xrsex | |- RR*s e. _V |
|
| 26 | 25 | a1i | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> RR*s e. _V ) |
| 27 | fzfid | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 ... n ) e. Fin ) |
|
| 28 | difss | |- ( RR* \ { -oo } ) C_ RR* |
|
| 29 | 28 | a1i | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR* \ { -oo } ) C_ RR* ) |
| 30 | xmetf | |- ( E e. ( *Met ` V ) -> E : ( V X. V ) --> RR* ) |
|
| 31 | ffn | |- ( E : ( V X. V ) --> RR* -> E Fn ( V X. V ) ) |
|
| 32 | 7 30 31 | 3syl | |- ( ph -> E Fn ( V X. V ) ) |
| 33 | xmetcl | |- ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) e. RR* ) |
|
| 34 | xmetge0 | |- ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> 0 <_ ( f E g ) ) |
|
| 35 | ge0nemnf | |- ( ( ( f E g ) e. RR* /\ 0 <_ ( f E g ) ) -> ( f E g ) =/= -oo ) |
|
| 36 | 33 34 35 | syl2anc | |- ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) =/= -oo ) |
| 37 | eldifsn | |- ( ( f E g ) e. ( RR* \ { -oo } ) <-> ( ( f E g ) e. RR* /\ ( f E g ) =/= -oo ) ) |
|
| 38 | 33 36 37 | sylanbrc | |- ( ( E e. ( *Met ` V ) /\ f e. V /\ g e. V ) -> ( f E g ) e. ( RR* \ { -oo } ) ) |
| 39 | 38 | 3expb | |- ( ( E e. ( *Met ` V ) /\ ( f e. V /\ g e. V ) ) -> ( f E g ) e. ( RR* \ { -oo } ) ) |
| 40 | 7 39 | sylan | |- ( ( ph /\ ( f e. V /\ g e. V ) ) -> ( f E g ) e. ( RR* \ { -oo } ) ) |
| 41 | 40 | ralrimivva | |- ( ph -> A. f e. V A. g e. V ( f E g ) e. ( RR* \ { -oo } ) ) |
| 42 | ffnov | |- ( E : ( V X. V ) --> ( RR* \ { -oo } ) <-> ( E Fn ( V X. V ) /\ A. f e. V A. g e. V ( f E g ) e. ( RR* \ { -oo } ) ) ) |
|
| 43 | 32 41 42 | sylanbrc | |- ( ph -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) |
| 44 | 43 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) |
| 45 | 11 | ssrab3 | |- S C_ ( ( V X. V ) ^m ( 1 ... n ) ) |
| 46 | 45 | a1i | |- ( ( ph /\ n e. NN ) -> S C_ ( ( V X. V ) ^m ( 1 ... n ) ) ) |
| 47 | 46 | sselda | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> g e. ( ( V X. V ) ^m ( 1 ... n ) ) ) |
| 48 | elmapi | |- ( g e. ( ( V X. V ) ^m ( 1 ... n ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
|
| 49 | 47 48 | syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
| 50 | fco | |- ( ( E : ( V X. V ) --> ( RR* \ { -oo } ) /\ g : ( 1 ... n ) --> ( V X. V ) ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) |
|
| 51 | 44 49 50 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) |
| 52 | 0re | |- 0 e. RR |
|
| 53 | rexr | |- ( 0 e. RR -> 0 e. RR* ) |
|
| 54 | renemnf | |- ( 0 e. RR -> 0 =/= -oo ) |
|
| 55 | eldifsn | |- ( 0 e. ( RR* \ { -oo } ) <-> ( 0 e. RR* /\ 0 =/= -oo ) ) |
|
| 56 | 53 54 55 | sylanbrc | |- ( 0 e. RR -> 0 e. ( RR* \ { -oo } ) ) |
| 57 | 52 56 | mp1i | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 0 e. ( RR* \ { -oo } ) ) |
| 58 | xaddlid | |- ( x e. RR* -> ( 0 +e x ) = x ) |
|
| 59 | xaddrid | |- ( x e. RR* -> ( x +e 0 ) = x ) |
|
| 60 | 58 59 | jca | |- ( x e. RR* -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) |
| 61 | 60 | adantl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. RR* ) -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) |
| 62 | 23 24 10 26 27 29 51 57 61 | gsumress | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) = ( W gsum ( E o. g ) ) ) |
| 63 | 10 23 | ressbas2 | |- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` W ) ) |
| 64 | 28 63 | ax-mp | |- ( RR* \ { -oo } ) = ( Base ` W ) |
| 65 | 10 | xrs10 | |- 0 = ( 0g ` W ) |
| 66 | 10 | xrs1cmn | |- W e. CMnd |
| 67 | 66 | a1i | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> W e. CMnd ) |
| 68 | c0ex | |- 0 e. _V |
|
| 69 | 68 | a1i | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 0 e. _V ) |
| 70 | 51 27 69 | fdmfifsupp | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) finSupp 0 ) |
| 71 | 64 65 67 27 51 70 | gsumcl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( E o. g ) ) e. ( RR* \ { -oo } ) ) |
| 72 | 62 71 | eqeltrd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) e. ( RR* \ { -oo } ) ) |
| 73 | 72 | eldifad | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) e. RR* ) |
| 74 | 73 | fmpttd | |- ( ( ph /\ n e. NN ) -> ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) : S --> RR* ) |
| 75 | 74 | frnd | |- ( ( ph /\ n e. NN ) -> ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) |
| 76 | 75 | ralrimiva | |- ( ph -> A. n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) |
| 77 | iunss | |- ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* <-> A. n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) |
|
| 78 | 76 77 | sylibr | |- ( ph -> U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) C_ RR* ) |
| 79 | 12 78 | eqsstrid | |- ( ph -> T C_ RR* ) |
| 80 | infxrcl | |- ( T C_ RR* -> inf ( T , RR* , < ) e. RR* ) |
|
| 81 | 79 80 | syl | |- ( ph -> inf ( T , RR* , < ) e. RR* ) |
| 82 | xmetcl | |- ( ( E e. ( *Met ` V ) /\ X e. V /\ Y e. V ) -> ( X E Y ) e. RR* ) |
|
| 83 | 7 8 9 82 | syl3anc | |- ( ph -> ( X E Y ) e. RR* ) |
| 84 | 1nn | |- 1 e. NN |
|
| 85 | 1ex | |- 1 e. _V |
|
| 86 | opex | |- <. X , Y >. e. _V |
|
| 87 | 85 86 | f1osn | |- { <. 1 , <. X , Y >. >. } : { 1 } -1-1-onto-> { <. X , Y >. } |
| 88 | f1of | |- ( { <. 1 , <. X , Y >. >. } : { 1 } -1-1-onto-> { <. X , Y >. } -> { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } ) |
|
| 89 | 87 88 | ax-mp | |- { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } |
| 90 | 8 9 | opelxpd | |- ( ph -> <. X , Y >. e. ( V X. V ) ) |
| 91 | 90 | snssd | |- ( ph -> { <. X , Y >. } C_ ( V X. V ) ) |
| 92 | fss | |- ( ( { <. 1 , <. X , Y >. >. } : { 1 } --> { <. X , Y >. } /\ { <. X , Y >. } C_ ( V X. V ) ) -> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) |
|
| 93 | 89 91 92 | sylancr | |- ( ph -> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) |
| 94 | 7 | elfvexd | |- ( ph -> V e. _V ) |
| 95 | 94 94 | xpexd | |- ( ph -> ( V X. V ) e. _V ) |
| 96 | snex | |- { 1 } e. _V |
|
| 97 | elmapg | |- ( ( ( V X. V ) e. _V /\ { 1 } e. _V ) -> ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) <-> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) ) |
|
| 98 | 95 96 97 | sylancl | |- ( ph -> ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) <-> { <. 1 , <. X , Y >. >. } : { 1 } --> ( V X. V ) ) ) |
| 99 | 93 98 | mpbird | |- ( ph -> { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) ) |
| 100 | op1stg | |- ( ( X e. V /\ Y e. V ) -> ( 1st ` <. X , Y >. ) = X ) |
|
| 101 | 8 9 100 | syl2anc | |- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
| 102 | 101 | fveq2d | |- ( ph -> ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) ) |
| 103 | op2ndg | |- ( ( X e. V /\ Y e. V ) -> ( 2nd ` <. X , Y >. ) = Y ) |
|
| 104 | 8 9 103 | syl2anc | |- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 105 | 104 | fveq2d | |- ( ph -> ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) |
| 106 | 102 105 | jca | |- ( ph -> ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) |
| 107 | 25 | a1i | |- ( ph -> RR*s e. _V ) |
| 108 | snfi | |- { 1 } e. Fin |
|
| 109 | 108 | a1i | |- ( ph -> { 1 } e. Fin ) |
| 110 | 28 | a1i | |- ( ph -> ( RR* \ { -oo } ) C_ RR* ) |
| 111 | xmetge0 | |- ( ( E e. ( *Met ` V ) /\ X e. V /\ Y e. V ) -> 0 <_ ( X E Y ) ) |
|
| 112 | 7 8 9 111 | syl3anc | |- ( ph -> 0 <_ ( X E Y ) ) |
| 113 | ge0nemnf | |- ( ( ( X E Y ) e. RR* /\ 0 <_ ( X E Y ) ) -> ( X E Y ) =/= -oo ) |
|
| 114 | 83 112 113 | syl2anc | |- ( ph -> ( X E Y ) =/= -oo ) |
| 115 | eldifsn | |- ( ( X E Y ) e. ( RR* \ { -oo } ) <-> ( ( X E Y ) e. RR* /\ ( X E Y ) =/= -oo ) ) |
|
| 116 | 83 114 115 | sylanbrc | |- ( ph -> ( X E Y ) e. ( RR* \ { -oo } ) ) |
| 117 | fconst6g | |- ( ( X E Y ) e. ( RR* \ { -oo } ) -> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) |
|
| 118 | 116 117 | syl | |- ( ph -> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) |
| 119 | fcoconst | |- ( ( E Fn ( V X. V ) /\ <. X , Y >. e. ( V X. V ) ) -> ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( { 1 } X. { ( E ` <. X , Y >. ) } ) ) |
|
| 120 | 32 90 119 | syl2anc | |- ( ph -> ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( { 1 } X. { ( E ` <. X , Y >. ) } ) ) |
| 121 | 85 86 | xpsn | |- ( { 1 } X. { <. X , Y >. } ) = { <. 1 , <. X , Y >. >. } |
| 122 | 121 | coeq2i | |- ( E o. ( { 1 } X. { <. X , Y >. } ) ) = ( E o. { <. 1 , <. X , Y >. >. } ) |
| 123 | df-ov | |- ( X E Y ) = ( E ` <. X , Y >. ) |
|
| 124 | 123 | eqcomi | |- ( E ` <. X , Y >. ) = ( X E Y ) |
| 125 | 124 | sneqi | |- { ( E ` <. X , Y >. ) } = { ( X E Y ) } |
| 126 | 125 | xpeq2i | |- ( { 1 } X. { ( E ` <. X , Y >. ) } ) = ( { 1 } X. { ( X E Y ) } ) |
| 127 | 120 122 126 | 3eqtr3g | |- ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) = ( { 1 } X. { ( X E Y ) } ) ) |
| 128 | 127 | feq1d | |- ( ph -> ( ( E o. { <. 1 , <. X , Y >. >. } ) : { 1 } --> ( RR* \ { -oo } ) <-> ( { 1 } X. { ( X E Y ) } ) : { 1 } --> ( RR* \ { -oo } ) ) ) |
| 129 | 118 128 | mpbird | |- ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) : { 1 } --> ( RR* \ { -oo } ) ) |
| 130 | 52 56 | mp1i | |- ( ph -> 0 e. ( RR* \ { -oo } ) ) |
| 131 | 60 | adantl | |- ( ( ph /\ x e. RR* ) -> ( ( 0 +e x ) = x /\ ( x +e 0 ) = x ) ) |
| 132 | 23 24 10 107 109 110 129 130 131 | gsumress | |- ( ph -> ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) = ( W gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) |
| 133 | fconstmpt | |- ( { 1 } X. { ( X E Y ) } ) = ( j e. { 1 } |-> ( X E Y ) ) |
|
| 134 | 127 133 | eqtrdi | |- ( ph -> ( E o. { <. 1 , <. X , Y >. >. } ) = ( j e. { 1 } |-> ( X E Y ) ) ) |
| 135 | 134 | oveq2d | |- ( ph -> ( W gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) = ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) ) |
| 136 | cmnmnd | |- ( W e. CMnd -> W e. Mnd ) |
|
| 137 | 66 136 | mp1i | |- ( ph -> W e. Mnd ) |
| 138 | 84 | a1i | |- ( ph -> 1 e. NN ) |
| 139 | eqidd | |- ( j = 1 -> ( X E Y ) = ( X E Y ) ) |
|
| 140 | 64 139 | gsumsn | |- ( ( W e. Mnd /\ 1 e. NN /\ ( X E Y ) e. ( RR* \ { -oo } ) ) -> ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) = ( X E Y ) ) |
| 141 | 137 138 116 140 | syl3anc | |- ( ph -> ( W gsum ( j e. { 1 } |-> ( X E Y ) ) ) = ( X E Y ) ) |
| 142 | 132 135 141 | 3eqtrrd | |- ( ph -> ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) |
| 143 | fveq1 | |- ( g = { <. 1 , <. X , Y >. >. } -> ( g ` 1 ) = ( { <. 1 , <. X , Y >. >. } ` 1 ) ) |
|
| 144 | 85 86 | fvsn | |- ( { <. 1 , <. X , Y >. >. } ` 1 ) = <. X , Y >. |
| 145 | 143 144 | eqtrdi | |- ( g = { <. 1 , <. X , Y >. >. } -> ( g ` 1 ) = <. X , Y >. ) |
| 146 | 145 | fveq2d | |- ( g = { <. 1 , <. X , Y >. >. } -> ( 1st ` ( g ` 1 ) ) = ( 1st ` <. X , Y >. ) ) |
| 147 | 146 | fveqeq2d | |- ( g = { <. 1 , <. X , Y >. >. } -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) ) ) |
| 148 | 145 | fveq2d | |- ( g = { <. 1 , <. X , Y >. >. } -> ( 2nd ` ( g ` 1 ) ) = ( 2nd ` <. X , Y >. ) ) |
| 149 | 148 | fveqeq2d | |- ( g = { <. 1 , <. X , Y >. >. } -> ( ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) |
| 150 | 147 149 | anbi12d | |- ( g = { <. 1 , <. X , Y >. >. } -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) <-> ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) ) ) |
| 151 | coeq2 | |- ( g = { <. 1 , <. X , Y >. >. } -> ( E o. g ) = ( E o. { <. 1 , <. X , Y >. >. } ) ) |
|
| 152 | 151 | oveq2d | |- ( g = { <. 1 , <. X , Y >. >. } -> ( RR*s gsum ( E o. g ) ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) |
| 153 | 152 | eqeq2d | |- ( g = { <. 1 , <. X , Y >. >. } -> ( ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) |
| 154 | 150 153 | anbi12d | |- ( g = { <. 1 , <. X , Y >. >. } -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> ( ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) ) |
| 155 | 154 | rspcev | |- ( ( { <. 1 , <. X , Y >. >. } e. ( ( V X. V ) ^m { 1 } ) /\ ( ( ( F ` ( 1st ` <. X , Y >. ) ) = ( F ` X ) /\ ( F ` ( 2nd ` <. X , Y >. ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. { <. 1 , <. X , Y >. >. } ) ) ) ) -> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
| 156 | 99 106 142 155 | syl12anc | |- ( ph -> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
| 157 | ovex | |- ( X E Y ) e. _V |
|
| 158 | eqid | |- ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) = ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) |
|
| 159 | 158 | elrnmpt | |- ( ( X E Y ) e. _V -> ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
| 160 | 157 159 | ax-mp | |- ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) |
| 161 | 11 | rexeqi | |- ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) |
| 162 | fveq1 | |- ( h = g -> ( h ` 1 ) = ( g ` 1 ) ) |
|
| 163 | 162 | fveq2d | |- ( h = g -> ( 1st ` ( h ` 1 ) ) = ( 1st ` ( g ` 1 ) ) ) |
| 164 | 163 | fveqeq2d | |- ( h = g -> ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) <-> ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) ) ) |
| 165 | fveq1 | |- ( h = g -> ( h ` n ) = ( g ` n ) ) |
|
| 166 | 165 | fveq2d | |- ( h = g -> ( 2nd ` ( h ` n ) ) = ( 2nd ` ( g ` n ) ) ) |
| 167 | 166 | fveqeq2d | |- ( h = g -> ( ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) ) |
| 168 | fveq1 | |- ( h = g -> ( h ` i ) = ( g ` i ) ) |
|
| 169 | 168 | fveq2d | |- ( h = g -> ( 2nd ` ( h ` i ) ) = ( 2nd ` ( g ` i ) ) ) |
| 170 | 169 | fveq2d | |- ( h = g -> ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 2nd ` ( g ` i ) ) ) ) |
| 171 | fveq1 | |- ( h = g -> ( h ` ( i + 1 ) ) = ( g ` ( i + 1 ) ) ) |
|
| 172 | 171 | fveq2d | |- ( h = g -> ( 1st ` ( h ` ( i + 1 ) ) ) = ( 1st ` ( g ` ( i + 1 ) ) ) ) |
| 173 | 172 | fveq2d | |- ( h = g -> ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) |
| 174 | 170 173 | eqeq12d | |- ( h = g -> ( ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) <-> ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
| 175 | 174 | ralbidv | |- ( h = g -> ( A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) <-> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
| 176 | 164 167 175 | 3anbi123d | |- ( h = g -> ( ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) |
| 177 | 176 | rexrab | |- ( E. g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( h ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
| 178 | 161 177 | bitri | |- ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) |
| 179 | oveq2 | |- ( n = 1 -> ( 1 ... n ) = ( 1 ... 1 ) ) |
|
| 180 | 1z | |- 1 e. ZZ |
|
| 181 | fzsn | |- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
|
| 182 | 180 181 | ax-mp | |- ( 1 ... 1 ) = { 1 } |
| 183 | 179 182 | eqtrdi | |- ( n = 1 -> ( 1 ... n ) = { 1 } ) |
| 184 | 183 | oveq2d | |- ( n = 1 -> ( ( V X. V ) ^m ( 1 ... n ) ) = ( ( V X. V ) ^m { 1 } ) ) |
| 185 | df-3an | |- ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
|
| 186 | ral0 | |- A. i e. (/) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) |
|
| 187 | oveq1 | |- ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) |
|
| 188 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 189 | 187 188 | eqtrdi | |- ( n = 1 -> ( n - 1 ) = 0 ) |
| 190 | 189 | oveq2d | |- ( n = 1 -> ( 1 ... ( n - 1 ) ) = ( 1 ... 0 ) ) |
| 191 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 192 | 190 191 | eqtrdi | |- ( n = 1 -> ( 1 ... ( n - 1 ) ) = (/) ) |
| 193 | 192 | raleqdv | |- ( n = 1 -> ( A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) <-> A. i e. (/) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
| 194 | 186 193 | mpbiri | |- ( n = 1 -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) |
| 195 | 194 | biantrud | |- ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) |
| 196 | 2fveq3 | |- ( n = 1 -> ( 2nd ` ( g ` n ) ) = ( 2nd ` ( g ` 1 ) ) ) |
|
| 197 | 196 | fveqeq2d | |- ( n = 1 -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) |
| 198 | 197 | anbi2d | |- ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) |
| 199 | 195 198 | bitr3d | |- ( n = 1 -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) |
| 200 | 185 199 | bitrid | |- ( n = 1 -> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) ) ) |
| 201 | 200 | anbi1d | |- ( n = 1 -> ( ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) |
| 202 | 184 201 | rexeqbidv | |- ( n = 1 -> ( E. g e. ( ( V X. V ) ^m ( 1 ... n ) ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) |
| 203 | 178 202 | bitrid | |- ( n = 1 -> ( E. g e. S ( X E Y ) = ( RR*s gsum ( E o. g ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) |
| 204 | 160 203 | bitrid | |- ( n = 1 -> ( ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) ) |
| 205 | 204 | rspcev | |- ( ( 1 e. NN /\ E. g e. ( ( V X. V ) ^m { 1 } ) ( ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` 1 ) ) ) = ( F ` Y ) ) /\ ( X E Y ) = ( RR*s gsum ( E o. g ) ) ) ) -> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 206 | 84 156 205 | sylancr | |- ( ph -> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 207 | eliun | |- ( ( X E Y ) e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. n e. NN ( X E Y ) e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
|
| 208 | 206 207 | sylibr | |- ( ph -> ( X E Y ) e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 209 | 208 12 | eleqtrrdi | |- ( ph -> ( X E Y ) e. T ) |
| 210 | infxrlb | |- ( ( T C_ RR* /\ ( X E Y ) e. T ) -> inf ( T , RR* , < ) <_ ( X E Y ) ) |
|
| 211 | 79 209 210 | syl2anc | |- ( ph -> inf ( T , RR* , < ) <_ ( X E Y ) ) |
| 212 | 12 | eleq2i | |- ( p e. T <-> p e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 213 | eliun | |- ( p e. U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
|
| 214 | 212 213 | bitri | |- ( p e. T <-> E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 215 | 158 | elrnmpt | |- ( p e. _V -> ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S p = ( RR*s gsum ( E o. g ) ) ) ) |
| 216 | 215 | elv | |- ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) <-> E. g e. S p = ( RR*s gsum ( E o. g ) ) ) |
| 217 | 176 11 | elrab2 | |- ( g e. S <-> ( g e. ( ( V X. V ) ^m ( 1 ... n ) ) /\ ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) ) |
| 218 | 217 | simprbi | |- ( g e. S -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
| 219 | 218 | adantl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) /\ ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) ) |
| 220 | 219 | simp2d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) ) |
| 221 | 3 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> F : V -1-1-onto-> B ) |
| 222 | f1of1 | |- ( F : V -1-1-onto-> B -> F : V -1-1-> B ) |
|
| 223 | 221 222 | syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> F : V -1-1-> B ) |
| 224 | simplr | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. NN ) |
|
| 225 | elfz1end | |- ( n e. NN <-> n e. ( 1 ... n ) ) |
|
| 226 | 224 225 | sylib | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. ( 1 ... n ) ) |
| 227 | 49 226 | ffvelcdmd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` n ) e. ( V X. V ) ) |
| 228 | xp2nd | |- ( ( g ` n ) e. ( V X. V ) -> ( 2nd ` ( g ` n ) ) e. V ) |
|
| 229 | 227 228 | syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` n ) ) e. V ) |
| 230 | 9 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> Y e. V ) |
| 231 | f1fveq | |- ( ( F : V -1-1-> B /\ ( ( 2nd ` ( g ` n ) ) e. V /\ Y e. V ) ) -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( 2nd ` ( g ` n ) ) = Y ) ) |
|
| 232 | 223 229 230 231 | syl12anc | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 2nd ` ( g ` n ) ) ) = ( F ` Y ) <-> ( 2nd ` ( g ` n ) ) = Y ) ) |
| 233 | 220 232 | mpbid | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` n ) ) = Y ) |
| 234 | 233 | oveq2d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` n ) ) ) = ( X E Y ) ) |
| 235 | eleq1 | |- ( m = 1 -> ( m e. ( 1 ... n ) <-> 1 e. ( 1 ... n ) ) ) |
|
| 236 | 2fveq3 | |- ( m = 1 -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` 1 ) ) ) |
|
| 237 | 236 | oveq2d | |- ( m = 1 -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` 1 ) ) ) ) |
| 238 | oveq2 | |- ( m = 1 -> ( 1 ... m ) = ( 1 ... 1 ) ) |
|
| 239 | 238 182 | eqtrdi | |- ( m = 1 -> ( 1 ... m ) = { 1 } ) |
| 240 | 239 | reseq2d | |- ( m = 1 -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` { 1 } ) ) |
| 241 | 240 | oveq2d | |- ( m = 1 -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` { 1 } ) ) ) |
| 242 | 237 241 | breq12d | |- ( m = 1 -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) |
| 243 | 235 242 | imbi12d | |- ( m = 1 -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) ) |
| 244 | 243 | imbi2d | |- ( m = 1 -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) ) ) |
| 245 | eleq1 | |- ( m = x -> ( m e. ( 1 ... n ) <-> x e. ( 1 ... n ) ) ) |
|
| 246 | 2fveq3 | |- ( m = x -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` x ) ) ) |
|
| 247 | 246 | oveq2d | |- ( m = x -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` x ) ) ) ) |
| 248 | oveq2 | |- ( m = x -> ( 1 ... m ) = ( 1 ... x ) ) |
|
| 249 | 248 | reseq2d | |- ( m = x -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... x ) ) ) |
| 250 | 249 | oveq2d | |- ( m = x -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) |
| 251 | 247 250 | breq12d | |- ( m = x -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) |
| 252 | 245 251 | imbi12d | |- ( m = x -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) |
| 253 | 252 | imbi2d | |- ( m = x -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) ) |
| 254 | eleq1 | |- ( m = ( x + 1 ) -> ( m e. ( 1 ... n ) <-> ( x + 1 ) e. ( 1 ... n ) ) ) |
|
| 255 | 2fveq3 | |- ( m = ( x + 1 ) -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` ( x + 1 ) ) ) ) |
|
| 256 | 255 | oveq2d | |- ( m = ( x + 1 ) -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) |
| 257 | oveq2 | |- ( m = ( x + 1 ) -> ( 1 ... m ) = ( 1 ... ( x + 1 ) ) ) |
|
| 258 | 257 | reseq2d | |- ( m = ( x + 1 ) -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) |
| 259 | 258 | oveq2d | |- ( m = ( x + 1 ) -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) |
| 260 | 256 259 | breq12d | |- ( m = ( x + 1 ) -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) |
| 261 | 254 260 | imbi12d | |- ( m = ( x + 1 ) -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) |
| 262 | 261 | imbi2d | |- ( m = ( x + 1 ) -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) ) |
| 263 | eleq1 | |- ( m = n -> ( m e. ( 1 ... n ) <-> n e. ( 1 ... n ) ) ) |
|
| 264 | 2fveq3 | |- ( m = n -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` n ) ) ) |
|
| 265 | 264 | oveq2d | |- ( m = n -> ( X E ( 2nd ` ( g ` m ) ) ) = ( X E ( 2nd ` ( g ` n ) ) ) ) |
| 266 | oveq2 | |- ( m = n -> ( 1 ... m ) = ( 1 ... n ) ) |
|
| 267 | 266 | reseq2d | |- ( m = n -> ( ( E o. g ) |` ( 1 ... m ) ) = ( ( E o. g ) |` ( 1 ... n ) ) ) |
| 268 | 267 | oveq2d | |- ( m = n -> ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) |
| 269 | 265 268 | breq12d | |- ( m = n -> ( ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) <-> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) |
| 270 | 263 269 | imbi12d | |- ( m = n -> ( ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) <-> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) |
| 271 | 270 | imbi2d | |- ( m = n -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( m e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` m ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... m ) ) ) ) ) <-> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) ) |
| 272 | 7 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E e. ( *Met ` V ) ) |
| 273 | 8 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> X e. V ) |
| 274 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 275 | 224 274 | eleqtrdi | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> n e. ( ZZ>= ` 1 ) ) |
| 276 | eluzfz1 | |- ( n e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... n ) ) |
|
| 277 | 275 276 | syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 1 e. ( 1 ... n ) ) |
| 278 | 49 277 | ffvelcdmd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` 1 ) e. ( V X. V ) ) |
| 279 | xp2nd | |- ( ( g ` 1 ) e. ( V X. V ) -> ( 2nd ` ( g ` 1 ) ) e. V ) |
|
| 280 | 278 279 | syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 2nd ` ( g ` 1 ) ) e. V ) |
| 281 | xmetcl | |- ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` 1 ) ) e. V ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) e. RR* ) |
|
| 282 | 272 273 280 281 | syl3anc | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) e. RR* ) |
| 283 | 282 | xrleidd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( X E ( 2nd ` ( g ` 1 ) ) ) ) |
| 284 | 137 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> W e. Mnd ) |
| 285 | 84 | a1i | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> 1 e. NN ) |
| 286 | 44 278 | ffvelcdmd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E ` ( g ` 1 ) ) e. ( RR* \ { -oo } ) ) |
| 287 | 2fveq3 | |- ( j = 1 -> ( E ` ( g ` j ) ) = ( E ` ( g ` 1 ) ) ) |
|
| 288 | 64 287 | gsumsn | |- ( ( W e. Mnd /\ 1 e. NN /\ ( E ` ( g ` 1 ) ) e. ( RR* \ { -oo } ) ) -> ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) = ( E ` ( g ` 1 ) ) ) |
| 289 | 284 285 286 288 | syl3anc | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) = ( E ` ( g ` 1 ) ) ) |
| 290 | 272 30 | syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> E : ( V X. V ) --> RR* ) |
| 291 | fcompt | |- ( ( E : ( V X. V ) --> RR* /\ g : ( 1 ... n ) --> ( V X. V ) ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) |
|
| 292 | 290 49 291 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) |
| 293 | 292 | reseq1d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` { 1 } ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` { 1 } ) ) |
| 294 | 277 | snssd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> { 1 } C_ ( 1 ... n ) ) |
| 295 | 294 | resmptd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` { 1 } ) = ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) |
| 296 | 293 295 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` { 1 } ) = ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) |
| 297 | 296 | oveq2d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` { 1 } ) ) = ( W gsum ( j e. { 1 } |-> ( E ` ( g ` j ) ) ) ) ) |
| 298 | df-ov | |- ( X E ( 2nd ` ( g ` 1 ) ) ) = ( E ` <. X , ( 2nd ` ( g ` 1 ) ) >. ) |
|
| 299 | 1st2nd2 | |- ( ( g ` 1 ) e. ( V X. V ) -> ( g ` 1 ) = <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. ) |
|
| 300 | 278 299 | syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( g ` 1 ) = <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. ) |
| 301 | 219 | simp1d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) ) |
| 302 | xp1st | |- ( ( g ` 1 ) e. ( V X. V ) -> ( 1st ` ( g ` 1 ) ) e. V ) |
|
| 303 | 278 302 | syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1st ` ( g ` 1 ) ) e. V ) |
| 304 | f1fveq | |- ( ( F : V -1-1-> B /\ ( ( 1st ` ( g ` 1 ) ) e. V /\ X e. V ) ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( 1st ` ( g ` 1 ) ) = X ) ) |
|
| 305 | 223 303 273 304 | syl12anc | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( F ` ( 1st ` ( g ` 1 ) ) ) = ( F ` X ) <-> ( 1st ` ( g ` 1 ) ) = X ) ) |
| 306 | 301 305 | mpbid | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1st ` ( g ` 1 ) ) = X ) |
| 307 | 306 | opeq1d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> <. ( 1st ` ( g ` 1 ) ) , ( 2nd ` ( g ` 1 ) ) >. = <. X , ( 2nd ` ( g ` 1 ) ) >. ) |
| 308 | 300 307 | eqtr2d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> <. X , ( 2nd ` ( g ` 1 ) ) >. = ( g ` 1 ) ) |
| 309 | 308 | fveq2d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( E ` <. X , ( 2nd ` ( g ` 1 ) ) >. ) = ( E ` ( g ` 1 ) ) ) |
| 310 | 298 309 | eqtrid | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) = ( E ` ( g ` 1 ) ) ) |
| 311 | 289 297 310 | 3eqtr4d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` { 1 } ) ) = ( X E ( 2nd ` ( g ` 1 ) ) ) ) |
| 312 | 283 311 | breqtrrd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) |
| 313 | 312 | a1d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( 1 e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` 1 ) ) ) <_ ( W gsum ( ( E o. g ) |` { 1 } ) ) ) ) |
| 314 | simprl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. NN ) |
|
| 315 | 314 274 | eleqtrdi | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( ZZ>= ` 1 ) ) |
| 316 | simprr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( x + 1 ) e. ( 1 ... n ) ) |
|
| 317 | peano2fzr | |- ( ( x e. ( ZZ>= ` 1 ) /\ ( x + 1 ) e. ( 1 ... n ) ) -> x e. ( 1 ... n ) ) |
|
| 318 | 315 316 317 | syl2anc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( 1 ... n ) ) |
| 319 | 318 | expr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. NN ) -> ( ( x + 1 ) e. ( 1 ... n ) -> x e. ( 1 ... n ) ) ) |
| 320 | 319 | imim1d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ x e. NN ) -> ( ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) ) |
| 321 | 272 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E e. ( *Met ` V ) ) |
| 322 | 273 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> X e. V ) |
| 323 | 49 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
| 324 | 323 318 | ffvelcdmd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` x ) e. ( V X. V ) ) |
| 325 | xp2nd | |- ( ( g ` x ) e. ( V X. V ) -> ( 2nd ` ( g ` x ) ) e. V ) |
|
| 326 | 324 325 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` x ) ) e. V ) |
| 327 | xmetcl | |- ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` x ) ) e. V ) -> ( X E ( 2nd ` ( g ` x ) ) ) e. RR* ) |
|
| 328 | 321 322 326 327 | syl3anc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` x ) ) ) e. RR* ) |
| 329 | 66 | a1i | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> W e. CMnd ) |
| 330 | fzfid | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... x ) e. Fin ) |
|
| 331 | 51 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) ) |
| 332 | fzsuc | |- ( x e. ( ZZ>= ` 1 ) -> ( 1 ... ( x + 1 ) ) = ( ( 1 ... x ) u. { ( x + 1 ) } ) ) |
|
| 333 | 315 332 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... ( x + 1 ) ) = ( ( 1 ... x ) u. { ( x + 1 ) } ) ) |
| 334 | elfzuz3 | |- ( ( x + 1 ) e. ( 1 ... n ) -> n e. ( ZZ>= ` ( x + 1 ) ) ) |
|
| 335 | 334 | ad2antll | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> n e. ( ZZ>= ` ( x + 1 ) ) ) |
| 336 | fzss2 | |- ( n e. ( ZZ>= ` ( x + 1 ) ) -> ( 1 ... ( x + 1 ) ) C_ ( 1 ... n ) ) |
|
| 337 | 335 336 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... ( x + 1 ) ) C_ ( 1 ... n ) ) |
| 338 | 333 337 | eqsstrrd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( 1 ... x ) u. { ( x + 1 ) } ) C_ ( 1 ... n ) ) |
| 339 | 338 | unssad | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1 ... x ) C_ ( 1 ... n ) ) |
| 340 | 331 339 | fssresd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) : ( 1 ... x ) --> ( RR* \ { -oo } ) ) |
| 341 | 68 | a1i | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> 0 e. _V ) |
| 342 | 340 330 341 | fdmfifsupp | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) finSupp 0 ) |
| 343 | 64 65 329 330 340 342 | gsumcl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. ( RR* \ { -oo } ) ) |
| 344 | 343 | eldifad | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* ) |
| 345 | 321 30 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E : ( V X. V ) --> RR* ) |
| 346 | 323 316 | ffvelcdmd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) e. ( V X. V ) ) |
| 347 | 345 346 | ffvelcdmd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) |
| 348 | xleadd1a | |- ( ( ( ( X E ( 2nd ` ( g ` x ) ) ) e. RR* /\ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* /\ ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) /\ ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
|
| 349 | 348 | ex | |- ( ( ( X E ( 2nd ` ( g ` x ) ) ) e. RR* /\ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) e. RR* /\ ( E ` ( g ` ( x + 1 ) ) ) e. RR* ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 350 | 328 344 347 349 | syl3anc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 351 | xp2nd | |- ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) |
|
| 352 | 346 351 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) |
| 353 | xmettri | |- ( ( E e. ( *Met ` V ) /\ ( X e. V /\ ( 2nd ` ( g ` ( x + 1 ) ) ) e. V /\ ( 2nd ` ( g ` x ) ) e. V ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) |
|
| 354 | 321 322 352 326 353 | syl13anc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 355 | 1st2nd2 | |- ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( g ` ( x + 1 ) ) = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
|
| 356 | 346 355 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
| 357 | 2fveq3 | |- ( i = x -> ( 2nd ` ( g ` i ) ) = ( 2nd ` ( g ` x ) ) ) |
|
| 358 | 357 | fveq2d | |- ( i = x -> ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 2nd ` ( g ` x ) ) ) ) |
| 359 | fvoveq1 | |- ( i = x -> ( g ` ( i + 1 ) ) = ( g ` ( x + 1 ) ) ) |
|
| 360 | 359 | fveq2d | |- ( i = x -> ( 1st ` ( g ` ( i + 1 ) ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) |
| 361 | 360 | fveq2d | |- ( i = x -> ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) |
| 362 | 358 361 | eqeq12d | |- ( i = x -> ( ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) <-> ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 363 | 219 | simp3d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) |
| 364 | 363 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( g ` i ) ) ) = ( F ` ( 1st ` ( g ` ( i + 1 ) ) ) ) ) |
| 365 | nnz | |- ( x e. NN -> x e. ZZ ) |
|
| 366 | 365 | ad2antrl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ZZ ) |
| 367 | eluzp1m1 | |- ( ( x e. ZZ /\ n e. ( ZZ>= ` ( x + 1 ) ) ) -> ( n - 1 ) e. ( ZZ>= ` x ) ) |
|
| 368 | 366 335 367 | syl2anc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( n - 1 ) e. ( ZZ>= ` x ) ) |
| 369 | elfzuzb | |- ( x e. ( 1 ... ( n - 1 ) ) <-> ( x e. ( ZZ>= ` 1 ) /\ ( n - 1 ) e. ( ZZ>= ` x ) ) ) |
|
| 370 | 315 368 369 | sylanbrc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> x e. ( 1 ... ( n - 1 ) ) ) |
| 371 | 362 364 370 | rspcdva | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) ) |
| 372 | 223 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> F : V -1-1-> B ) |
| 373 | xp1st | |- ( ( g ` ( x + 1 ) ) e. ( V X. V ) -> ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) |
|
| 374 | 346 373 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) |
| 375 | f1fveq | |- ( ( F : V -1-1-> B /\ ( ( 2nd ` ( g ` x ) ) e. V /\ ( 1st ` ( g ` ( x + 1 ) ) ) e. V ) ) -> ( ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) <-> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) ) |
|
| 376 | 372 326 374 375 | syl12anc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( F ` ( 2nd ` ( g ` x ) ) ) = ( F ` ( 1st ` ( g ` ( x + 1 ) ) ) ) <-> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) ) |
| 377 | 371 376 | mpbid | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( 2nd ` ( g ` x ) ) = ( 1st ` ( g ` ( x + 1 ) ) ) ) |
| 378 | 377 | opeq1d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. = <. ( 1st ` ( g ` ( x + 1 ) ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
| 379 | 356 378 | eqtr4d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( g ` ( x + 1 ) ) = <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
| 380 | 379 | fveq2d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) = ( E ` <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) ) |
| 381 | df-ov | |- ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) = ( E ` <. ( 2nd ` ( g ` x ) ) , ( 2nd ` ( g ` ( x + 1 ) ) ) >. ) |
|
| 382 | 380 381 | eqtr4di | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) = ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) |
| 383 | 382 | oveq2d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) = ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( ( 2nd ` ( g ` x ) ) E ( 2nd ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 384 | 354 383 | breqtrrd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
| 385 | xmetcl | |- ( ( E e. ( *Met ` V ) /\ X e. V /\ ( 2nd ` ( g ` ( x + 1 ) ) ) e. V ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* ) |
|
| 386 | 321 322 352 385 | syl3anc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* ) |
| 387 | 328 347 | xaddcld | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) |
| 388 | 344 347 | xaddcld | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) |
| 389 | xrletr | |- ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) e. RR* /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* /\ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) e. RR* ) -> ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
|
| 390 | 386 387 388 389 | syl3anc | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) /\ ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 391 | 384 390 | mpand | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( ( X E ( 2nd ` ( g ` x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 392 | 350 391 | syld | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 393 | xrex | |- RR* e. _V |
|
| 394 | 393 | difexi | |- ( RR* \ { -oo } ) e. _V |
| 395 | 10 24 | ressplusg | |- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` W ) ) |
| 396 | 394 395 | ax-mp | |- +e = ( +g ` W ) |
| 397 | 44 | ad2antrr | |- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) |
| 398 | fzelp1 | |- ( j e. ( 1 ... x ) -> j e. ( 1 ... ( x + 1 ) ) ) |
|
| 399 | 49 | ad2antrr | |- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
| 400 | 337 | sselda | |- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> j e. ( 1 ... n ) ) |
| 401 | 399 400 | ffvelcdmd | |- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... ( x + 1 ) ) ) -> ( g ` j ) e. ( V X. V ) ) |
| 402 | 398 401 | sylan2 | |- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> ( g ` j ) e. ( V X. V ) ) |
| 403 | 397 402 | ffvelcdmd | |- ( ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) /\ j e. ( 1 ... x ) ) -> ( E ` ( g ` j ) ) e. ( RR* \ { -oo } ) ) |
| 404 | fzp1disj | |- ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) |
|
| 405 | 404 | a1i | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) ) |
| 406 | disjsn | |- ( ( ( 1 ... x ) i^i { ( x + 1 ) } ) = (/) <-> -. ( x + 1 ) e. ( 1 ... x ) ) |
|
| 407 | 405 406 | sylib | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> -. ( x + 1 ) e. ( 1 ... x ) ) |
| 408 | 44 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> E : ( V X. V ) --> ( RR* \ { -oo } ) ) |
| 409 | 408 346 | ffvelcdmd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E ` ( g ` ( x + 1 ) ) ) e. ( RR* \ { -oo } ) ) |
| 410 | 2fveq3 | |- ( j = ( x + 1 ) -> ( E ` ( g ` j ) ) = ( E ` ( g ` ( x + 1 ) ) ) ) |
|
| 411 | 64 396 329 330 403 316 407 409 410 | gsumunsn | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) = ( ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
| 412 | 292 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( E o. g ) = ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) ) |
| 413 | 412 333 | reseq12d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( ( 1 ... x ) u. { ( x + 1 ) } ) ) ) |
| 414 | 338 | resmptd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( ( 1 ... x ) u. { ( x + 1 ) } ) ) = ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) |
| 415 | 413 414 | eqtrd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) = ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) |
| 416 | 415 | oveq2d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) = ( W gsum ( j e. ( ( 1 ... x ) u. { ( x + 1 ) } ) |-> ( E ` ( g ` j ) ) ) ) ) |
| 417 | 412 | reseq1d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) = ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( 1 ... x ) ) ) |
| 418 | 339 | resmptd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( j e. ( 1 ... n ) |-> ( E ` ( g ` j ) ) ) |` ( 1 ... x ) ) = ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) |
| 419 | 417 418 | eqtrd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( E o. g ) |` ( 1 ... x ) ) = ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) |
| 420 | 419 | oveq2d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) = ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) ) |
| 421 | 420 | oveq1d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) = ( ( W gsum ( j e. ( 1 ... x ) |-> ( E ` ( g ` j ) ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
| 422 | 411 416 421 | 3eqtr4d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) = ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) |
| 423 | 422 | breq2d | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) <-> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) +e ( E ` ( g ` ( x + 1 ) ) ) ) ) ) |
| 424 | 392 423 | sylibrd | |- ( ( ( ( ph /\ n e. NN ) /\ g e. S ) /\ ( x e. NN /\ ( x + 1 ) e. ( 1 ... n ) ) ) -> ( ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) |
| 425 | 320 424 | animpimp2impd | |- ( x e. NN -> ( ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( x e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` x ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... x ) ) ) ) ) -> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( x + 1 ) e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` ( x + 1 ) ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... ( x + 1 ) ) ) ) ) ) ) ) |
| 426 | 244 253 262 271 313 425 | nnind | |- ( n e. NN -> ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) ) |
| 427 | 224 426 | mpcom | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( n e. ( 1 ... n ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) ) |
| 428 | 226 427 | mpd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E ( 2nd ` ( g ` n ) ) ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) |
| 429 | 234 428 | eqbrtrrd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E Y ) <_ ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) |
| 430 | ffn | |- ( ( E o. g ) : ( 1 ... n ) --> ( RR* \ { -oo } ) -> ( E o. g ) Fn ( 1 ... n ) ) |
|
| 431 | fnresdm | |- ( ( E o. g ) Fn ( 1 ... n ) -> ( ( E o. g ) |` ( 1 ... n ) ) = ( E o. g ) ) |
|
| 432 | 51 430 431 | 3syl | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( ( E o. g ) |` ( 1 ... n ) ) = ( E o. g ) ) |
| 433 | 432 | oveq2d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) = ( W gsum ( E o. g ) ) ) |
| 434 | 62 433 | eqtr4d | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( RR*s gsum ( E o. g ) ) = ( W gsum ( ( E o. g ) |` ( 1 ... n ) ) ) ) |
| 435 | 429 434 | breqtrrd | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( X E Y ) <_ ( RR*s gsum ( E o. g ) ) ) |
| 436 | breq2 | |- ( p = ( RR*s gsum ( E o. g ) ) -> ( ( X E Y ) <_ p <-> ( X E Y ) <_ ( RR*s gsum ( E o. g ) ) ) ) |
|
| 437 | 435 436 | syl5ibrcom | |- ( ( ( ph /\ n e. NN ) /\ g e. S ) -> ( p = ( RR*s gsum ( E o. g ) ) -> ( X E Y ) <_ p ) ) |
| 438 | 437 | rexlimdva | |- ( ( ph /\ n e. NN ) -> ( E. g e. S p = ( RR*s gsum ( E o. g ) ) -> ( X E Y ) <_ p ) ) |
| 439 | 216 438 | biimtrid | |- ( ( ph /\ n e. NN ) -> ( p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) -> ( X E Y ) <_ p ) ) |
| 440 | 439 | rexlimdva | |- ( ph -> ( E. n e. NN p e. ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) -> ( X E Y ) <_ p ) ) |
| 441 | 214 440 | biimtrid | |- ( ph -> ( p e. T -> ( X E Y ) <_ p ) ) |
| 442 | 441 | ralrimiv | |- ( ph -> A. p e. T ( X E Y ) <_ p ) |
| 443 | infxrgelb | |- ( ( T C_ RR* /\ ( X E Y ) e. RR* ) -> ( ( X E Y ) <_ inf ( T , RR* , < ) <-> A. p e. T ( X E Y ) <_ p ) ) |
|
| 444 | 79 83 443 | syl2anc | |- ( ph -> ( ( X E Y ) <_ inf ( T , RR* , < ) <-> A. p e. T ( X E Y ) <_ p ) ) |
| 445 | 442 444 | mpbird | |- ( ph -> ( X E Y ) <_ inf ( T , RR* , < ) ) |
| 446 | 81 83 211 445 | xrletrid | |- ( ph -> inf ( T , RR* , < ) = ( X E Y ) ) |
| 447 | 22 446 | eqtrd | |- ( ph -> ( ( F ` X ) D ( F ` Y ) ) = ( X E Y ) ) |