This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzsuc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | eluzfz2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 4 | peano2fzr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 5 | 3 4 | mpdan | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 6 | fzsplit | ⊢ ( 𝑁 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... ( 𝑁 + 1 ) ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
| 8 | eluzelz | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ℤ ) | |
| 9 | fzsn | ⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( ( 𝑁 + 1 ) ... ( 𝑁 + 1 ) ) = { ( 𝑁 + 1 ) } ) | |
| 10 | 1 8 9 | 3syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 1 ) ... ( 𝑁 + 1 ) ) = { ( 𝑁 + 1 ) } ) |
| 11 | 10 | uneq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... ( 𝑁 + 1 ) ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
| 12 | 7 11 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |