This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2fzr | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ℤ ) | |
| 3 | elfzuz3 | ⊢ ( ( 𝐾 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) | |
| 4 | peano2uzr | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 6 | elfzuzb | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) | |
| 7 | 1 5 6 | sylanbrc | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |