This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐶 : 𝐵 ⟶ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapvalg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ↑m 𝐵 ) = { 𝑔 ∣ 𝑔 : 𝐵 ⟶ 𝐴 } ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐶 ∈ { 𝑔 ∣ 𝑔 : 𝐵 ⟶ 𝐴 } ) ) |
| 3 | fex2 | ⊢ ( ( 𝐶 : 𝐵 ⟶ 𝐴 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → 𝐶 ∈ V ) | |
| 4 | 3 | 3com13 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 : 𝐵 ⟶ 𝐴 ) → 𝐶 ∈ V ) |
| 5 | 4 | 3expia | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 : 𝐵 ⟶ 𝐴 → 𝐶 ∈ V ) ) |
| 6 | feq1 | ⊢ ( 𝑔 = 𝐶 → ( 𝑔 : 𝐵 ⟶ 𝐴 ↔ 𝐶 : 𝐵 ⟶ 𝐴 ) ) | |
| 7 | 6 | elab3g | ⊢ ( ( 𝐶 : 𝐵 ⟶ 𝐴 → 𝐶 ∈ V ) → ( 𝐶 ∈ { 𝑔 ∣ 𝑔 : 𝐵 ⟶ 𝐴 } ↔ 𝐶 : 𝐵 ⟶ 𝐴 ) ) |
| 8 | 5 7 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝑔 ∣ 𝑔 : 𝐵 ⟶ 𝐴 } ↔ 𝐶 : 𝐵 ⟶ 𝐴 ) ) |
| 9 | 2 8 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐶 : 𝐵 ⟶ 𝐴 ) ) |