This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasdsf1o.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasdsf1o.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasdsf1o.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | ||
| imasdsf1o.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasdsf1o.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| imasdsf1o.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | ||
| imasdsf1o.m | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | ||
| imasdsf1o.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| imasdsf1o.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | imasdsf1o | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasdsf1o.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasdsf1o.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasdsf1o.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | |
| 4 | imasdsf1o.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasdsf1o.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 6 | imasdsf1o.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | |
| 7 | imasdsf1o.m | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 8 | imasdsf1o.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | imasdsf1o.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | eqid | ⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| 11 | eqid | ⊢ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } | |
| 12 | eqid | ⊢ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) = ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝐹 ‘ 𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) | |
| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | imasdsf1olem | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) ) |