This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumsn.s | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 ) | ||
| Assertion | gsumsn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumsn.s | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑘 𝐶 | |
| 4 | 3 1 2 | gsumsnf | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |