This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by Wolf Lammen, 30-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 | ⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ) | |
| 2 | con2b | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ( 𝑥 ∈ { 𝐵 } → ¬ 𝑥 ∈ 𝐴 ) ) | |
| 3 | velsn | ⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) | |
| 4 | 3 | imbi1i | ⊢ ( ( 𝑥 ∈ { 𝐵 } → ¬ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 5 | imnan | ⊢ ( ( 𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ↔ ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 6 | 2 4 5 | 3bitri | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 8 | alnex | ⊢ ( ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 9 | dfclel | ⊢ ( 𝐵 ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 10 | 8 9 | xchbinxr | ⊢ ( ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ¬ 𝐵 ∈ 𝐴 ) |
| 11 | 1 7 10 | 3bitri | ⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |