This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrab2.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| elrab2.2 | ⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ 𝜑 } | ||
| Assertion | elrab2 | ⊢ ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab2.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elrab2.2 | ⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ 𝜑 } | |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |
| 4 | 1 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
| 5 | 3 4 | bitri | ⊢ ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |