This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is an integer. (Contributed by NM, 9-May-2004) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 2 | 3mix2 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) | |
| 3 | elz | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) | |
| 4 | 1 2 3 | sylanbrc | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |