This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is a set. Theorem 7.12 of Quine p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT . (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 19-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snex | ⊢ { 𝐴 } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg | ⊢ ( 𝐴 ∈ V → { 𝐴 } ∈ V ) | |
| 2 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 3 | 2 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 3 4 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ V ) |
| 6 | 1 5 | pm2.61i | ⊢ { 𝐴 } ∈ V |