This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrs1mnd.1 | ⊢ 𝑅 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| Assertion | xrs10 | ⊢ 0 = ( 0g ‘ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrs1mnd.1 | ⊢ 𝑅 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| 2 | difss | ⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* | |
| 3 | xrsbas | ⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) | |
| 4 | 1 3 | ressbas2 | ⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) ) |
| 5 | 2 4 | ax-mp | ⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) |
| 6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 7 | xrex | ⊢ ℝ* ∈ V | |
| 8 | 7 | difexi | ⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 9 | xrsadd | ⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) | |
| 10 | 1 9 | ressplusg | ⊢ ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g ‘ 𝑅 ) ) |
| 11 | 8 10 | ax-mp | ⊢ +𝑒 = ( +g ‘ 𝑅 ) |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | rexr | ⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) | |
| 14 | renemnf | ⊢ ( 0 ∈ ℝ → 0 ≠ -∞ ) | |
| 15 | eldifsn | ⊢ ( 0 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 0 ∈ ℝ* ∧ 0 ≠ -∞ ) ) | |
| 16 | 13 14 15 | sylanbrc | ⊢ ( 0 ∈ ℝ → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 17 | 12 16 | mp1i | ⊢ ( ⊤ → 0 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 18 | eldifi | ⊢ ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) → 𝑥 ∈ ℝ* ) | |
| 19 | 18 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) → 𝑥 ∈ ℝ* ) |
| 20 | xaddlid | ⊢ ( 𝑥 ∈ ℝ* → ( 0 +𝑒 𝑥 ) = 𝑥 ) | |
| 21 | 19 20 | syl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) → ( 0 +𝑒 𝑥 ) = 𝑥 ) |
| 22 | 19 | xaddridd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑥 +𝑒 0 ) = 𝑥 ) |
| 23 | 5 6 11 17 21 22 | ismgmid2 | ⊢ ( ⊤ → 0 = ( 0g ‘ 𝑅 ) ) |
| 24 | 23 | mptru | ⊢ 0 = ( 0g ‘ 𝑅 ) |