This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Avoid ax-10 , ax-12 . (Revised by SN, 2-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 2 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 5 | df-ss | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 7 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 8 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 9 | 8 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 10 | 6 7 9 | 3bitrri | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 11 | 1 4 10 | 3bitri | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |