This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem iunss

Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Avoid ax-10 , ax-12 . (Revised by SN, 2-Feb-2026)

Ref Expression
Assertion iunss ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 df-ss ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑦 ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) )
2 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
3 2 imbi1i ( ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
4 3 albii ( ∀ 𝑦 ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
5 df-ss ( 𝐵𝐶 ↔ ∀ 𝑦 ( 𝑦𝐵𝑦𝐶 ) )
6 5 ralbii ( ∀ 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦𝐶 ) )
7 ralcom4 ( ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
8 r19.23v ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
9 8 albii ( ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
10 6 7 9 3bitrri ( ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑥𝐴 𝐵𝐶 )
11 1 4 10 3bitri ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )