This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 ... 𝐾 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 3 | elfzuz3 | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 4 | uztrn | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 6 | elfzuzb | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) | |
| 7 | 2 5 6 | sylanbrc | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 8 | 7 | ex | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 9 | 8 | ssrdv | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 ... 𝐾 ) ⊆ ( 𝑀 ... 𝑁 ) ) |