This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real numbers restricted to RR* \ { -oo } form a commutative monoid. They are not a group because 1 + +oo = 2 + +oo even though 1 =/= 2 . (Contributed by Mario Carneiro, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrs1mnd.1 | ⊢ 𝑅 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| Assertion | xrs1cmn | ⊢ 𝑅 ∈ CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrs1mnd.1 | ⊢ 𝑅 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| 2 | 1 | xrs1mnd | ⊢ 𝑅 ∈ Mnd |
| 3 | eldifi | ⊢ ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) → 𝑥 ∈ ℝ* ) | |
| 4 | eldifi | ⊢ ( 𝑦 ∈ ( ℝ* ∖ { -∞ } ) → 𝑦 ∈ ℝ* ) | |
| 5 | xaddcom | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 +𝑒 𝑦 ) = ( 𝑦 +𝑒 𝑥 ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ∧ 𝑦 ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑥 +𝑒 𝑦 ) = ( 𝑦 +𝑒 𝑥 ) ) |
| 7 | 6 | rgen2 | ⊢ ∀ 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ∀ 𝑦 ∈ ( ℝ* ∖ { -∞ } ) ( 𝑥 +𝑒 𝑦 ) = ( 𝑦 +𝑒 𝑥 ) |
| 8 | difss | ⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* | |
| 9 | xrsbas | ⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) | |
| 10 | 1 9 | ressbas2 | ⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) ) |
| 11 | 8 10 | ax-mp | ⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) |
| 12 | xrex | ⊢ ℝ* ∈ V | |
| 13 | 12 | difexi | ⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 14 | xrsadd | ⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) | |
| 15 | 1 14 | ressplusg | ⊢ ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g ‘ 𝑅 ) ) |
| 16 | 13 15 | ax-mp | ⊢ +𝑒 = ( +g ‘ 𝑅 ) |
| 17 | 11 16 | iscmn | ⊢ ( 𝑅 ∈ CMnd ↔ ( 𝑅 ∈ Mnd ∧ ∀ 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ∀ 𝑦 ∈ ( ℝ* ∖ { -∞ } ) ( 𝑥 +𝑒 𝑦 ) = ( 𝑦 +𝑒 𝑥 ) ) ) |
| 18 | 2 7 17 | mpbir2an | ⊢ 𝑅 ∈ CMnd |