This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Proof shortened by AV, 8-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumunsn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumunsn.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumunsn.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumunsn.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsumunsn.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsumunsn.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| gsumunsn.d | ⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 ) | ||
| gsumunsn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| gsumunsn.s | ⊢ ( 𝑘 = 𝑀 → 𝑋 = 𝑌 ) | ||
| Assertion | gsumunsn | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumunsn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumunsn.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumunsn.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsumunsn.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | gsumunsn.f | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | gsumunsn.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 7 | gsumunsn.d | ⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 ) | |
| 8 | gsumunsn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | gsumunsn.s | ⊢ ( 𝑘 = 𝑀 → 𝑋 = 𝑌 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) |
| 11 | 1 2 3 4 5 6 7 8 10 | gsumunsnd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |