This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fdmfisuppfi.f | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝑅 ) | |
| fdmfisuppfi.d | ⊢ ( 𝜑 → 𝐷 ∈ Fin ) | ||
| fdmfisuppfi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | fdmfifsupp | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmfisuppfi.f | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝑅 ) | |
| 2 | fdmfisuppfi.d | ⊢ ( 𝜑 → 𝐷 ∈ Fin ) | |
| 3 | fdmfisuppfi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 4 | 1 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 5 | 1 2 3 | fdmfisuppfi | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 6 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
| 7 | fnex | ⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐷 ∈ Fin ) → 𝐹 ∈ V ) | |
| 8 | 6 2 7 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 9 | isfsupp | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) ) | |
| 10 | 8 3 9 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) ) |
| 11 | 4 5 10 | mpbir2and | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |