This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of addrid . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddrid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | rexadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 +𝑒 0 ) = ( 𝐴 + 0 ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 0 ) = ( 𝐴 + 0 ) ) |
| 5 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 6 | 5 | addridd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 0 ) = 𝐴 ) |
| 7 | 4 6 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
| 8 | 0xr | ⊢ 0 ∈ ℝ* | |
| 9 | renemnf | ⊢ ( 0 ∈ ℝ → 0 ≠ -∞ ) | |
| 10 | 2 9 | ax-mp | ⊢ 0 ≠ -∞ |
| 11 | xaddpnf2 | ⊢ ( ( 0 ∈ ℝ* ∧ 0 ≠ -∞ ) → ( +∞ +𝑒 0 ) = +∞ ) | |
| 12 | 8 10 11 | mp2an | ⊢ ( +∞ +𝑒 0 ) = +∞ |
| 13 | oveq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 0 ) = ( +∞ +𝑒 0 ) ) | |
| 14 | id | ⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) | |
| 15 | 12 13 14 | 3eqtr4a | ⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
| 16 | renepnf | ⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) | |
| 17 | 2 16 | ax-mp | ⊢ 0 ≠ +∞ |
| 18 | xaddmnf2 | ⊢ ( ( 0 ∈ ℝ* ∧ 0 ≠ +∞ ) → ( -∞ +𝑒 0 ) = -∞ ) | |
| 19 | 8 17 18 | mp2an | ⊢ ( -∞ +𝑒 0 ) = -∞ |
| 20 | oveq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 0 ) = ( -∞ +𝑒 0 ) ) | |
| 21 | id | ⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) | |
| 22 | 19 20 21 | 3eqtr4a | ⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
| 23 | 7 15 22 | 3jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
| 24 | 1 23 | sylbi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 0 ) = 𝐴 ) |