This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsstrrd.1 | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) | |
| eqsstrrd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
| Assertion | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) | |
| 2 | eqsstrrd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| 3 | 1 | eqcomd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 4 | 3 2 | eqsstrd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |