This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxrgelb | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | ⊢ < Or ℝ* | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
| 3 | xrinfmss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑥 < 𝑦 ) ) ) | |
| 4 | id | ⊢ ( 𝐴 ⊆ ℝ* → 𝐴 ⊆ ℝ* ) | |
| 5 | 2 3 4 | infglbb | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) ) |
| 6 | 5 | notbid | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) ) |
| 7 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) | |
| 8 | 6 7 | bitr4di | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ) ) |
| 9 | id | ⊢ ( 𝐵 ∈ ℝ* → 𝐵 ∈ ℝ* ) | |
| 10 | infxrcl | ⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 11 | xrlenlt | ⊢ ( ( 𝐵 ∈ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ) ) | |
| 12 | 9 10 11 | syl2anr | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ¬ inf ( 𝐴 , ℝ* , < ) < 𝐵 ) ) |
| 13 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) | |
| 14 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ⊆ ℝ* ) | |
| 15 | 14 | sselda | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 16 | 13 15 | xrlenltd | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵 ) ) |
| 17 | 16 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ) ) |
| 18 | 8 12 17 | 3bitr4d | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) |