This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015) (Revised by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasbas.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasbas.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasbas.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasds.e | ⊢ 𝐸 = ( dist ‘ 𝑅 ) | ||
| imasds.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | ||
| imasdsval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| imasdsval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| imasdsval.s | ⊢ 𝑆 = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑋 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } | ||
| imasds.u | ⊢ 𝑇 = ( 𝐸 ↾ ( 𝑉 × 𝑉 ) ) | ||
| Assertion | imasdsval2 | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝑇 ∘ 𝑔 ) ) ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasbas.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasbas.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasbas.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imasbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasds.e | ⊢ 𝐸 = ( dist ‘ 𝑅 ) | |
| 6 | imasds.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | |
| 7 | imasdsval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | imasdsval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | imasdsval.s | ⊢ 𝑆 = { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑋 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } | |
| 10 | imasds.u | ⊢ 𝑇 = ( 𝐸 ↾ ( 𝑉 × 𝑉 ) ) | |
| 11 | 1 2 3 4 5 6 7 8 9 | imasdsval | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) |
| 12 | 10 | coeq1i | ⊢ ( 𝑇 ∘ 𝑔 ) = ( ( 𝐸 ↾ ( 𝑉 × 𝑉 ) ) ∘ 𝑔 ) |
| 13 | 9 | ssrab3 | ⊢ 𝑆 ⊆ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) |
| 14 | 13 | sseli | ⊢ ( 𝑔 ∈ 𝑆 → 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ) |
| 15 | elmapi | ⊢ ( 𝑔 ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) → 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) ) | |
| 16 | frn | ⊢ ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉 × 𝑉 ) → ran 𝑔 ⊆ ( 𝑉 × 𝑉 ) ) | |
| 17 | cores | ⊢ ( ran 𝑔 ⊆ ( 𝑉 × 𝑉 ) → ( ( 𝐸 ↾ ( 𝑉 × 𝑉 ) ) ∘ 𝑔 ) = ( 𝐸 ∘ 𝑔 ) ) | |
| 18 | 14 15 16 17 | 4syl | ⊢ ( 𝑔 ∈ 𝑆 → ( ( 𝐸 ↾ ( 𝑉 × 𝑉 ) ) ∘ 𝑔 ) = ( 𝐸 ∘ 𝑔 ) ) |
| 19 | 12 18 | eqtrid | ⊢ ( 𝑔 ∈ 𝑆 → ( 𝑇 ∘ 𝑔 ) = ( 𝐸 ∘ 𝑔 ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝑔 ∈ 𝑆 → ( ℝ*𝑠 Σg ( 𝑇 ∘ 𝑔 ) ) = ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 21 | 20 | mpteq2ia | ⊢ ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝑇 ∘ 𝑔 ) ) ) = ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 22 | 21 | rneqi | ⊢ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝑇 ∘ 𝑔 ) ) ) = ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 23 | 22 | a1i | ⊢ ( 𝑛 ∈ ℕ → ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝑇 ∘ 𝑔 ) ) ) = ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) ) |
| 24 | 23 | iuneq2i | ⊢ ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝑇 ∘ 𝑔 ) ) ) = ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) |
| 25 | 24 | infeq1i | ⊢ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝑇 ∘ 𝑔 ) ) ) , ℝ* , < ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) |
| 26 | 11 25 | eqtr4di | ⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) = inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ 𝑆 ↦ ( ℝ*𝑠 Σg ( 𝑇 ∘ 𝑔 ) ) ) , ℝ* , < ) ) |