This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither G nor H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumress.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumress.o | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumress.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| gsumress.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| gsumress.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| gsumress.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| gsumress.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| gsumress.z | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) | ||
| gsumress.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) | ||
| Assertion | gsumress | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumress.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumress.o | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumress.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 4 | gsumress.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 5 | gsumress.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 6 | gsumress.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 7 | gsumress.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 8 | gsumress.z | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) | |
| 9 | gsumress.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑦 = 0 → ( 𝑦 + 𝑥 ) = ( 0 + 𝑥 ) ) | |
| 11 | 10 | eqeq1d | ⊢ ( 𝑦 = 0 → ( ( 𝑦 + 𝑥 ) = 𝑥 ↔ ( 0 + 𝑥 ) = 𝑥 ) ) |
| 12 | 11 | ovanraleqv | ⊢ ( 𝑦 = 0 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |
| 13 | 6 8 | sseldd | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 14 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 15 | 12 13 14 | elrabd | ⊢ ( 𝜑 → 0 ∈ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ) |
| 16 | 15 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ) |
| 17 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 18 | eqid | ⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } | |
| 19 | 1 17 2 18 | mgmidsssn0 | ⊢ ( 𝐺 ∈ 𝑉 → { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 20 | 4 19 | syl | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 21 | 20 15 | sseldd | ⊢ ( 𝜑 → 0 ∈ { ( 0g ‘ 𝐺 ) } ) |
| 22 | elsni | ⊢ ( 0 ∈ { ( 0g ‘ 𝐺 ) } → 0 = ( 0g ‘ 𝐺 ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |
| 24 | 23 | sneqd | ⊢ ( 𝜑 → { 0 } = { ( 0g ‘ 𝐺 ) } ) |
| 25 | 20 24 | sseqtrrd | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ⊆ { 0 } ) |
| 26 | 16 25 | eqssd | ⊢ ( 𝜑 → { 0 } = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ) |
| 27 | 11 | ovanraleqv | ⊢ ( 𝑦 = 0 → ( ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |
| 28 | 6 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 29 | 28 9 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 31 | 27 8 30 | elrabd | ⊢ ( 𝜑 → 0 ∈ { 𝑦 ∈ 𝑆 ∣ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ) |
| 32 | 3 1 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 33 | 6 32 | syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 34 | fvex | ⊢ ( Base ‘ 𝐻 ) ∈ V | |
| 35 | 33 34 | eqeltrdi | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 36 | 3 2 | ressplusg | ⊢ ( 𝑆 ∈ V → + = ( +g ‘ 𝐻 ) ) |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → + = ( +g ‘ 𝐻 ) ) |
| 38 | 37 | oveqd | ⊢ ( 𝜑 → ( 𝑦 + 𝑥 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) |
| 39 | 38 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑦 + 𝑥 ) = 𝑥 ↔ ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ) ) |
| 40 | 37 | oveqd | ⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 41 | 40 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) = 𝑥 ↔ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) ) |
| 42 | 39 41 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) ↔ ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) ) ) |
| 43 | 33 42 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) ) ) |
| 44 | 33 43 | rabeqbidv | ⊢ ( 𝜑 → { 𝑦 ∈ 𝑆 ∣ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } = { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ) |
| 45 | 31 44 | eleqtrd | ⊢ ( 𝜑 → 0 ∈ { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ) |
| 46 | 45 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ) |
| 47 | 3 | ovexi | ⊢ 𝐻 ∈ V |
| 48 | 47 | a1i | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 49 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 50 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 51 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 52 | eqid | ⊢ { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } = { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } | |
| 53 | 49 50 51 52 | mgmidsssn0 | ⊢ ( 𝐻 ∈ V → { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ⊆ { ( 0g ‘ 𝐻 ) } ) |
| 54 | 48 53 | syl | ⊢ ( 𝜑 → { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ⊆ { ( 0g ‘ 𝐻 ) } ) |
| 55 | 54 45 | sseldd | ⊢ ( 𝜑 → 0 ∈ { ( 0g ‘ 𝐻 ) } ) |
| 56 | elsni | ⊢ ( 0 ∈ { ( 0g ‘ 𝐻 ) } → 0 = ( 0g ‘ 𝐻 ) ) | |
| 57 | 55 56 | syl | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐻 ) ) |
| 58 | 57 | sneqd | ⊢ ( 𝜑 → { 0 } = { ( 0g ‘ 𝐻 ) } ) |
| 59 | 54 58 | sseqtrrd | ⊢ ( 𝜑 → { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ⊆ { 0 } ) |
| 60 | 46 59 | eqssd | ⊢ ( 𝜑 → { 0 } = { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ) |
| 61 | 26 60 | eqtr3d | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } = { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ) |
| 62 | 61 | sseq2d | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ↔ ran 𝐹 ⊆ { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ) ) |
| 63 | 23 57 | eqtr3d | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 64 | 37 | seqeq2d | ⊢ ( 𝜑 → seq 𝑚 ( + , 𝐹 ) = seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ) |
| 65 | 64 | fveq1d | ⊢ ( 𝜑 → ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) |
| 66 | 65 | eqeq2d | ⊢ ( 𝜑 → ( 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ↔ 𝑧 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) |
| 67 | 66 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ↔ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 68 | 67 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 69 | 68 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 70 | 69 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) = ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 71 | 37 | seqeq2d | ⊢ ( 𝜑 → seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ) |
| 72 | 71 | fveq1d | ⊢ ( 𝜑 → ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
| 73 | 72 | eqeq2d | ⊢ ( 𝜑 → ( 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ↔ 𝑧 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) |
| 74 | 73 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) |
| 75 | 74 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) |
| 76 | 75 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) = ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) |
| 77 | 70 76 | ifeq12d | ⊢ ( 𝜑 → if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) = if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) ) |
| 78 | 62 63 77 | ifbieq12d | ⊢ ( 𝜑 → if ( ran 𝐹 ⊆ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } , ( 0g ‘ 𝐺 ) , if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) ) = if ( ran 𝐹 ⊆ { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } , ( 0g ‘ 𝐻 ) , if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) ) ) |
| 79 | 26 | difeq2d | ⊢ ( 𝜑 → ( V ∖ { 0 } ) = ( V ∖ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ) ) |
| 80 | 79 | imaeq2d | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } ) ) ) |
| 81 | 7 6 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 82 | 1 17 2 18 80 4 5 81 | gsumval | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) } , ( 0g ‘ 𝐺 ) , if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) ) ) |
| 83 | 60 | difeq2d | ⊢ ( 𝜑 → ( V ∖ { 0 } ) = ( V ∖ { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ) ) |
| 84 | 83 | imaeq2d | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } ) ) ) |
| 85 | 33 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝑆 ↔ 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) ) |
| 86 | 7 85 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) |
| 87 | 49 50 51 52 84 48 5 86 | gsumval | ⊢ ( 𝜑 → ( 𝐻 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑦 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = 𝑥 ) } , ( 0g ‘ 𝐻 ) , if ( 𝐴 ∈ ran ... , ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑧 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ 𝑧 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) ) ) ) ) |
| 88 | 78 82 87 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |